Permit Application

Submit this form and any required attachments to:

City of Chehalis Community Development Department 1321 S. MARKET BLVD. CHEHALIS WA 98532 (360) 345-2229

APPLICANT FILL OUT AND SIGN UPPER SECTION:

JOB ADDRESS: OJackson Hwy, Chehalis

APPLICANT: NAME: Fuller Designs (Cassie) ADDRESS: 1101 Kresky Ave CITY/ST/ZIP: Centralia, WA 98531 PHONE#: (360) 807-4420 EMAIL: Admin@fullerdesigns.org	PROPERTY OWNER (Same as Applicant? Yes No NAME: Lakewood Industries ADDRESS: 12030 Sunrise Valley DR STE 450 CITY/ST/ZIP: Reston, VA 20191 PHONE#:
CONTACT PERSON (Same as Applicant? Yes IX No[]) COMPANY NAME: Same as Applicant NAME ADDRESS: CITY/STATE/ZIP PHONE # EMAIL:	CONTRACTOR (Same as Property Owner? Yes No 🗷) COMPANY: SunQuest Construction CONTRACTOR REGISTRATION # ADDRESS: CITY/STATE/ZIP PHONE #_ (360) 520-4943 EMAIL: drhawes@hotmail.com
DETAILED PROJECT DESCRIPTION:	

See Cover Letter

PROJECT VALUE: \$10,000,000.00

Verbal comments made during discovery are not binding. Only the plan(s) submitted will be reviewed for compliance with applicable codes. By signing below, I grant permission for City of Chehalis employees to enter and remain on the property for the purpose of review and approval of this proposal and to conduct inspections related to this proposal.

<u>Signature:</u>	Date:
Chell	3/04/2021
Name (print):	<u>Telephone #:</u>
Cassie Fuller	(360) 807-4420

					and the latter of the second se
OFFICE USE ONLY:					
Date Received: Parcel #: 01070	MAR 1 1 2021 7900/000	By: M Zoning	Date Reviewed: Flood Zo	By:	
Permit #: CVC	1001/4.4.1	su-ar-our	CTA DI COULT.	57-27-0-01	1.000.00000000000000000000000000000000
			Exhibi	t A	

RECEIVED Building & Planning MAR 1 1 2021 City of Chehali

1

Transmittal

Date: March 10, 2021 Project Name: Jackson Villa 4 Project No.: 2084 Permit No:

City of Chehalis Tammy Baraconi Tbaraconi@ci.chehalis.wa.us

No.	ltem	
2	Jackson Highway Plans	Full scale
1	Preliminary Drainage and Erosion Control Report	
1	Master Application	
1	Utility Service Attachment	
1	SEPA	
1	Conditional Use/ PUD and Variance Application	
1	Narrative	
1	Statutory Warranty Deed (not sure you need this, but some jurisdictions require them)	
1	Lewis County Road Approach	

Tammy,

Jackson alle Sheart

l have attached two sets of plans, drainage report, and several applications. If you have any questions, please let me know. 💿

Cassie Fuller

3/3/2021

Tammy Baraconi, Sr. Planner City of Chehalis Community Development 1321 S Market Blvd. Chehalis, WA 98532

RE: Jackson Villa Expansion 4 Project: Multi-Family Development Parcel #s: 010799001000

Tammy,

Please accept this narrative and attached plans for Jackson Villa Expansion. The following narrative is intended to provide an overall direction of the development and help address any issues that might arise throughout this process.

Existing Condition

This project consists of 1 parcel listed above in Chehalis' southern UGA area. The site currently is undeveloped land with two small sheds on it. The site has access from Kennicott Road.

Wet utilities (water and sewer) are currently adjacent to the site located along Jackson Hwy and Kennicott Road. Sewer and water are from City of Chehalis.

Dry utilities (electric and communications) are adjacent to the property. Overhead services are located adjacent to the site along Jackson Highway and Kennicott Road. Lewis County PUD is electric provider and Hughes Net/Comcast is communications.

Proposed Improvements

This project proposes to build 21 duplexes and a single 23 plex with parking and playground. Dwelling units will be individually owned condominiums with the common area ownership by a HOA. Private driveways and utilities will be extended onsite. Onsite parking will be provided. A new bus stop with mail box cluster is proposed along Kennicott Road adjacent to the site.

<u>Zoning</u>

The project is zoned R-UGA. Condominiums appear to be an allowed use within this zone.

Water

Public water service will be extended through the development from the existing City of Chehalis water mains in Kennicott Road. 4 block banks of meters are proposed with individual lines extending to each residence.

Sewer

Public sewer will be extended through the development from the existing City of Chehalis sewer mains. Maintenance agreements are expected to be signed relieving the City of responsibility onsite. Individual condo owners will maintain in residence piping while HOA will maintain common area sewers. City will maintain once in right of way.

Stormwater

The development is anticipated to require a full drainage report. Site will be constructed in 2 phases with each phase being fully compliant with stormwater regulation on its own. Phase 1 will utilize catch basin filtration and underground pipe detention systems. Phase 2 will utilize standard biofilter and pond detention systems. Full details will be provided in the civil construction plans.

Critical Areas

A mapped wetland is located onsite. The wetland has been delineated and scored by Loowit Consulting Group. Phase one will adhere to buffers for this wetland. A wetland bank use plan has been prepared for phase 2. Once the bank use plan has been approved and credits purchased this wetland will be removed completely.

Dry Utilities - Power/Communication

Existing overhead facilities are expected to be brought underground and then extended through the project site to each lot. We will work with Lewis County PUD and other dry utility providers to develop an appropriate plan on how to properly extend these facilities.

Roads/Access

The site currently has direct access from Kennicott Road. Each phase of this project will have a separate entrance on Kennicott which will eventually create a looped internal privately owned access. A traffic study was prepared by Heath and associates. This study identified proposed vehicular trips expected and how they will affect the surrounding roadways including potential upgrades to Jackson Highway. The report also analyzed project access locations and required site distance. All traffic report recommendations have been integrated into the Civil plans.

Buildings

The two existing sheds will be demolished. Demo permits will be applied for and approved prior to removal. New buildings include twenty-one duplexes and one 23-unit structure. All buildings have been vested under the 2015 IBC and will obtain appropriate building permits prior to construction.

Thank you for accepting all applications and a full plan set. Feel free to call or email if you have any questions.

Sincerely,

Tulle

Aaron Fuller, PE Fuller Designs 360-807-4420 – Office afuller@fullerdesigns.org

PROJECT INFORMATION:

AFFLICANT.	12030 SUNRISE VALLEY DR STE 450 RESTON, VA 20191
SITE ADDRESS:	0 JACKSON HWY, CHEHALIS, WA 98532
PARCEL NUMBER:	010799001000
ZONING (CITY):	UGA – URBAN GROWTH AREA
LOTS:	1 EXISTING
SITE SOILS:	GALVIN SILT LOAM, O TO 8 PERCENT SLOPES & SCAMMAN SILTY CLAY LOAM, 5 TO 15 PERCENT SLOPES
WATER:	CITY MAIN - METERED
SANITARY SEWER:	CITY MAIN - GRAVITY
GRADING:	TBD± CY FILL TBD± CY CUT
SURVEY INFOR	RMATION:
VERTICAL DATUM NAVD 88	
Samere Strengthere	

LAKEWOOD INVESTORS IN O

BASIS OF BEARING HOLDING RECORD OF SURVEY RECORDED UNDER AUDITOR'S FILE NO. 3325715, IN BOOK 27 OF SURVEYS AT PAGE 53, RECORDS OF LEWIS COUNTY.

GEOTECHNICAL INFORMATION:

A GEOTECHNICAL REPORT WAS NOT PREPARED FOR THIS PROJECT. IN LIEU OF A REPORT ALL CONSTRUCTION SHALL COMPLY WITH STANDARD SPECIFICATIONS.

TOPOGRAPHIC INFORMATION:

TOPOGRAPHIC INFORMATION DEPICTED IN THESE DRAWINGS WAS PROVIDED BY LEWS COUNTY DEFICIENT & GOODMAN LAND SURVEYING, INC. TOPOGRAPHIC INFORMATION WAS NOT FIELD VERIFIED BY FULLER DESIGNS.

LEGEND:

E to UR

LINETYPES	

EXISTING	PROPOSED	DESC.
	·	LOT LINE
		EASEMENT
$- x \rightarrow x - $	-00-	FENCING
		DITCH/WETLAND
		ROAD CENTERLINE
		RIGHT OF WAY
	The second s	EDGE OF PAVEMENT
		EDGE OF GRAVEL
	~~~	CONTOUR LINE (MAJOR)
104 - 1 - 1	<b>^</b>	CONTOUR LINE (MINOR)
	— F —	ELECTRICAL UNDERCROUND
	OE	
OT	OT	TELECOMMUNICATION
G	G	GAS MAIN
- 1	W	WATER MAIN
SS	— SS —	SEWER MAIN
FM	FM	FORCE MAIN
	— SI —	STORM MAIN
		SILT FENCE
		PROJECT AREA
SYMBOLS:		
EXISTING	PROPOSED	DESC.
		FLOW DIRECTION ARROW
1 de la	XXXXXX	SPOT ELEVATION
		SEWER MANHOLE
(I)	5 (ST)	STORM MANHOLE
		CATCH BASIN
9 _{c0}	Ø	INSPECTION PORT
	OWELL	WELL
	8	WATER METER BOX
	M	WATER VALVE
O .	б	HYDRANT
	-14-14-	RPBA
ID .	<u> </u>	GAS VALVE
-0-	-0-	POLE
0	$\odot$	TREE
НАТСН:		
EXISTING	PROPOSED	DESC.

1000

ASPHALT PAVEMENT

CONCRETE SIDEWALK

LANDSCAPED AREA

GRAVEL AREA

SAWCUT

### **ABBREVIATIONS:**

AC	ASPHALT CONCRETE
BM	BENCHMARK
BVCS	BEGIN VERTICAL CURVE STATION
BCVE	CABLE TELEVISION
CB	CATCH BASIN
CL	CENTERLINE
CMP	CORRUGATED METAL PIPE
CO	CLEAN OUT
	DEGREES
ø	DIAMETER
EE	
FL	FLEVATION
EVCS	END VERTICAL CURVE STATION
EVCE	END VERTICAL CURVE ELEVATION
EX	
FG	FINISH GRADE
FH	FIRE HYDRANT
FL	FLOW LINE
G	GAS
ĞВ	GRADE BREAK
GM	GAS METER
GV	GATE VALVE
HP	HIGH POINT
К	CALCULATED CURVE VALUE
L	
LUV	LINEAR FEET
M	METER
MH	MAN HOLE
MJ	NOT FOR CONSTRUCTION
OHP	OVER HEAD POWER
P	POWER
PC	POINT OF CURVATURE
PI	PROPERTY LINE
POB	POINT OF BEGINNING
POC	POINT OF CONNECTION
PRC	POINT OF REVERSE CURVATURE
PVC	POLY-VINYL CHLORIDE
R	RADIUS
RCP	REINFORCED CONCRETE PIPE
RFC	RELEASED FOR CONSTRUCTION
ROW	RIGHT OF WAY
RPBA	REDUCED PRESSURE BACKFLOW ASSEMBLY
SF	SQUARE FOOT
SD	STORM DRAIN
SS	SANITARY SEWER
STA	STATION
SW	SIDEWALK
T	TELEPHONE
IB	TRUST BLOCK
TESC	TEMPORARY EROSION AND SEDIMENT
1200	CONTROL
TG	TOP OF GRATE
LICP	I YPICAL LINDERGROUND POWER
W	WATER
WM	WATER METER
WV	WATER VALVE
2%	PERCENT
٨	

### **DRAWING CONTENTS:**

CO.1 -	CIVIL COVER SHEET
C1.1 -	EX. CONDITION, DEMO AND TESC PLAN
C1.2 -	TESC NOTES AND DETAILS
C2.1 -	HORIZONTAL CONTROL PLAN
C2.2 -	OVERALL GRADING PLAN
C3.1 -	ROAD "A" PLAN AND PROFILE
C3.2 -	ROAD "B" PLAN AND PROFILE
C33-	ROAD "C"&"D" PLAN AND PROFILE
C34 -	POAD "F" PLAN AND PROFILE
03.4	DOAD "E" DIAN AND PROFILE
07.0	ROAD E FLAN AND PROFILE
03.0 -	ROAD F PLAN AND PROFILE
C3.7 -	ROAD F PLAN AND PROFILE
C3.8 -	ROADWAY NOTES AND DETAILS
C4.1 -	STORM DRAINAGE PLAN
C4.2 -	STORM DRAINAGE PLAN - PHASE 1
C4.3 -	STORM DRAINAGE PLAN - PHASE 2
C5.1 -	SEWER PLAN AND PROFILE
05.2 -	SEWER PLAN AND PROFILE
05.3 -	SEWER PLAN AND PROFILE
05.4 -	SEWER PLAN AND PROFILE
C5.5 -	SEWER PLAN AND PROFILE
05.0 -	SEWER PLAN AND PROFILE
05.7 -	SEWER PLAN AND PROFILE
05.8 -	WATER PLAN AND PROFILE
05.9 -	WATER PLAN AND PROFILE
C5.10-	WATER PLAN AND PROFILE
C5.11-	WATER PLAN AND PROFILE
05.12-	WATER PLAN AND PROFILE
05.13-	WATER PLAN AND PROFILE
05.14-	ITTUTY NOTES AND DETAILS
05.15-	UTILITY NOTES AND DETAILS
00.10-	UTILITY NOTES AND DETAILS

# **JACKSON VILLA 4**

### SECTION 03 TOWNSHIP 13N RANGE 02W PT LT 8 SE RD BLK CHEHALIS. WASHINGTON

VICINITY MAP 0 torage 0 SW Salsbury Ave SITE Kennicott I 02 Grady's Gardens 9

> City of Chehalis JAN 06 202 Community Developmen

### UTILITIES LOCATE NOTE:

EXISTING UTILITIES LOCATION SHOWN IN THIS PLAN SET IS BASED ON INFORMATION OBTAINED FROM VARIOUS RECORDS RESEARCH, ON INFORMATION OBTAINED FROM VARIOUS RECORDS RESEARCH, ASBUILT DATA, AND FIELD MEASUREMENTS. FULLER DESIGNS ASBUMES NO RESPONSIBILITY FOR EXACT LOCATION OF UTILITIES EITHER SHOWN OR NOT SHOWN IN THESE DRAWINGS. CONTRACTOR SHALL VERIFY THE EXACT SIZE, DEPTH, LOCATION, AND ARRANGEMENT OF ALL UTILITIES PRIOR TO CONSTRUCTION. CONTRACTOR SHALL CALL UNDERGROUND LOCATE AT 811 PRIOR TO PERFORMING CONSTRUCTIONS ACTIVITIES.



### PROJECT SPECIFICATIONS:

THE WORK ON THIS PROJECT SHALL BE PERFORMED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS FOR ROAD, BRIDGE AND MUNICIPAL CONSTRUCTION, 2020 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION (WSDOT) (HEREAFTER "STANDARD SPECIFICATIONS").

ALSO INCORPORATED INTO THESE CONTRACT DOCUMENTS BY REFERENCE ARE:

- A. MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD)
  B. CITY ROAD STANDARDS
  C. CITY DRAINAGE STANDARDS
- D. THE INTERNATIONAL BUILDING CODE (IBC)

CURRENT EDITIONS OF THESE STANDARDS SHALL BE USED WHICH EXIST ON THE DATE OF CONTRACT ACCEPTANCE.

CONTRACTOR SHALL OBTAIN COPIES OF THESE PUBLICATION AT CONTRACTOR'S OWN EXPENSE.

THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL LABOR, THE CONTRACTOR IS RESPONSIBLE FOR PROVINING ALL PADUR, MATERIALS, TOOLS, EQUIPMENT, TRANSPORTATION, SUPPLIES AND INCIDENTALS REQUIRED TO COMPLETE ALL WORK SHOWN ON THESE DRAWINGS. ONCE WORK IS COMPLETED CONTRACTOR SHALL_OBTAIN ACCEPTANCE BY THE COUNTY AND PROJECT ENGINEER.

THE INTENT OF THESE DRAWINGS IS TO PRESCRIBE A COMPLETE PROJECT. OMISSIONS FROM THE DRAWINGS OF DETAIL OF WORK WHICH IS NECESSARY TO CARRY OUT THE INTENT OF THE DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR FROM PROVIDING THE OMITTED WORK.

ANY PROPOSED ALTERATIONS BY THE CONTRACTOR AFFECTING THE REQUIREMENTS AND INFORMATION IN THESE DRAWINGS SHALL BE IN WRITING AND WILL REQUIRE APPROVAL OF THE ENGINEER AND INSPECTOR.

### WORK IN RIGHT OF WAY:

CONTRACTOR SHALL OBTAIN A RIGHT OF WAY PERMIT PRIOR TO COMMENCING ANY WORK LOCATED IN RIGHT OF WAY. ALL WORK PERFORMED IN THE RIGHT OF WAY SHALL ADHERE TO DRAWINGS, STANDARD SPECIFICATIONS, AND REQUIREMENTS OUTLINED IN THE RIGHT OF WAY PERMIT.

### **RECORD DRAWINGS:**

FULLER DESIGNS IS REQUIRED BY THE CITY TO PROVIDE RECORD DRAWING CERTIFICATION PRIOR TO FINAL CITY ACCEPTANCE. FULLER DESIGNS WILL NOT CERTIFY RECORD DRAWINGS WITHOUT INSPECTION OF BELOW GRADE UTILITIES AND STRUCTURES. PRIOR TO BACKFILLING, CONTRACTOR SHALL NOTIFY FULLER DESIGNS OF NECESSARY INSPECTIONS.

CONTRACTOR TO VERIFY ALL DIMENSIONS IN FIELD AND NOTIFY ENGINEER OR INSPECTOR OF INCONSISTENCIES PRIOR TO START OF CONSTRUCTION. CONTRACTOR SHAALL MAINTAIN ONE SET OF THE CONTRACT DRAWINGS THAT SHALL INCUDE: ANY ALTERATIONS OR LOCATION OF UNDERGROUND UTILITIES ENCOUNTERED DURING THE PROGRESS OF THE PROJECT, ANY ALTERATIONS MADE TO THE IMPROVEMENTS BEING INSTALLED. MARKED DRAWINGS SHALL BE CLEAR AND LEGIBLE. DRAWINGS SHALL BE MARKED "RECORD DRAWINGS" AND SHALL BE SUBMITTED TO THE ENGINEER UPON PROJECT COMPLETION.

### CONTRACTOR LIABILITY NOTE:

CONTRACTOR AGREES TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR THE JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS PROJECT. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY THROUGHOUT PROJECT EXECUTION AND NOT BE LIMITED TO WORKING HOURS. CONTRACTOR SHALL PROGRESS WORK IN A MANOR THAT SHALL INDEMNIFY AND HOLD FULLER DESIGNS HARMLESS FROM ALL LIABILITY IN CONNECTION WITH CONTRACTOR DETERDATION WORK WITH CONTRACTOR'S PERFORMED WORK.

### REMOVAL OF UNSUITABLE MATERIALS:

IF UNSUITABLE MATERIALS AS DEFINED BY THE STANDARD SPECIFICATIONS ARE ENCOUNTERED, THIS MATERIAL SHALL BE REMOVED TO THE DEPTH REQUIRED BY THE ENGINEER OR INSPECTOR AND REPLACED WITH SUITABLE MATERIAL.

UNSUITABLE MATERIAL SHALL BE REMOVED FROM THE SITE AND HAULED TO A WASTE SITE OBTAINED BY THE CONTRACTOR. PRIOR TO REMOVAL, CONTRACTOR SHALL NOTIFY PROJECT OWNER SO MEASUREMENT/PAYMENT_CAN BE MADE PER TON OF UNSUITABLE MATERIAL REMOVED.

### EROSION CONTROL NOTE:

EROSION CONTROL MEASURES ARE NOT LIMITED TO THE ITEMS ON THESE PLANS. CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION AND MAINTENANCE OF ALL EROSION CONTROL MEASURES. NO SILTATION OF EXISTING OR PROPOSED DRAINAGE STRUCTURES WILL BE PERMITTED. CARE SHALL BE TAKEN TO PREVENT MIGRATION OF SOILS TO ADJACENT PROPERTIES. DISTURED EARTH SHALL BE STABILIZED AS REQUIRED BY THE STANDARD SPECIFICATIONS. INDIVIDUAL DESIGNATED TO MONITOR FORCIDE OUTTON. JIANWARU SPECIFICATIONS, INDIVIDUAL DESIGNATED TO MONITOR EROSION CONTROL FACILITIES DURING CONSTRUCTION SHALL HAVE CESCL CERTIFICATION.

### **GENERAL NOTES:**

CONTRACTOR SHALL COORDINATE ALL CONSTRUCTION ACTIVITIES WITH ADJACENT PROPERTY OWNERS. DRIVEWAYS AND UTILITY SERVICES SHALL REMAIN ACCESSIBLE AT ALL TIMES.

AREAS DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO THEIR ORIGINAL PRE-CONSTRUCTION STATE OR BETTER UPON COMPLETION OF WORK.

THESE DRAWINGS AND ALL ACCOMPANYING MATERIALS ARE COPYRIGHTED. UNAUTHORIZED COPYING OF THESE DOCUMENTS IS FORBIDDEN WITHOUT THE WRITTEN CONSENT OF FULLER DESIGNS.

	DRAWING TITLE:			
FULLER DESIGNS	0	SIVIL COVER	R SHEET	
1101 KRESKY AVE	SCALE: N/A	DATE: 09/12/20	DRAWN: SD	снескер: СТ
CENTRALIA, WA 98531	PROJECT NAME:			
(360) 807-4420	٩Ĺ	CKSON VILI	LA 4	









### **TESC NOTES:**

- $\langle T1 \rangle$  INSTALL SILT FENCE. SEE DETAIL T-1 SHEET C1.2.
- $\langle T2 \rangle$  install 100' Long construction entrance. See detail T-2 sheet C1.2.
- $\overline{\text{(T3)}}$  install inlet protection to ex catch basin. See detail T–3 sheet c1.2.
- T4 INSTALL STRAW BALE BARRIER AS SHOWN AND IN ACCORDANCE WITH DETAIL T-4 ON SHEET C1.2. BALES TO BE INSTALLED ALONG EXISTING DITCH SHOWN ON THIS SHEET. BALES WILL BE REMOVED ONCE SITE IS STABILIZED

### **DEMOLITION NOTES:**

- $\langle D1 \rangle$  EX. FENCE TO REMAIN.
- $\langle D2 \rangle$  EX. FENCE TO BE REMOVED.
- (D3) EX. STRUCTURE TO BE REMOVED.
- (D4) EX. TREE TO BE REMOVED.

### NOTES TO CONTRACTOR:

- ALL EXPOSED SOIL SURFACES SHALL BE SEEDED WITH AN EROSION CONTROL SEED MIX OR HYDROSEEDED IF NOT WORKED WITHIN 7 CALENDAR DAYS FROM MAY 1 TO SEPTEMBER 30. SOIL SHALL BE COVERED WITHIN 2 DAYS FROM OCTOBER 1 TO APRIL 30.
  SEEDED AREAS WILL BE COVERED WITH MULCH, HAY OR OTHER PROTECTIVE COVERING APPROVED BY THE ENGINEER TO PREVENT WASHOUT DURING RAIN EVENTS.
  CONTRACTOR SHALL APPLY WATER TO GRAVEL SURFACES DURING CONSTRUCTION TO MINIMIZE FUGITVE DUST.
  ROUTINE INSPECTION AND MAINTENANCE OF ALL INSTALLED EROSION AND SEDIMENT CONTROL BMPS, ESPECIALLY AFTER STORMS, IS REQUIRED.
  PERIODIC STREET CLEANING MAY BE NECESSARY TO REMOVE ANY SEDIMENT TRACKED OFF THE SITE.
  IN THE EVENT PROPOSED BMPS FAIL, APPROPRIATE MEASURES MUST BE TAKEN TO STOP SEDIMENTS FROM ENTERING WATERWAYS.

	LINE TABLE	
Line #	Bearing	Length
L1	S49' 58' 51.00"W	472.03
L2	N40' 01' 09.00"W	10.00
L3	S49' 58' 51.00"W	145.84
L4	N42' 17' 06.00"W	272.52
L5	N47' 40' 14.69"E	543.52
L6	N37'13'46.00"W	154.81
L7	N48' 33' 44.00"E	171.73
L8	S35' 44' 51.00"E	168.43

CUR	VE TA	BLE
Curve #	Radius	Length
C1	161.44	68.03







2 OF 34

### PRELIMINARY FOR PERMIT ONLY



ł,





# **PROJECT INFORMATION:**

PROPERTY OWNER:	LAKEWOOD INVESTORS LLC 12030 SUNRISE VALLEY DR STE 450 RESTON, VA 20191
SITE ADDRESS:	0 JACKSON HWY, Chehalis, wa 98532
PARCEL NUMBER:	010799001000
ZONING (CITY):	UGA – URBAN GROWTH AREA
LOTS:	1 EXISTING
SITE SOILS:	GALVIN SILT LOAM, 0 TO 8 PERCENT SLOPES & SCAMMAN SILTY CLAY LOAM, 5 TO 15 PERCENT SLOPES
OWNER:	CITY MAIN - METERED
SANITARY SEWER:	CITY MAIN - GRAVITY
GRADING:	19000± CY FILL 450± CY CUT

# SURVEY INFORMATION:

VERTICAL DATUM NAVD 88

# BASIS OF BEARING

HOLDING RECORD OF SURVEY RECORDED UNDER AUDITOR'S FILE NO. 3325715, IN BOOK 27 OF SURVEYS AT PAGE 53, RECORDS OF LEWIS COUNTY.

### **GEOTECHNICAL INFORMATION:**

A GEOTECHNICAL REPORT WAS NOT PREPARED FOR THIS PROJECT. IN LIEU OF A REPORT ALL CONSTRUCTION SHALL COMPLY WITH STANDARD SPECIFICATIONS.

### **TOPOGRAPHIC INFORMATION:**

TOPOGRAPHIC INFORMATION DEPICTED IN THESE DRAWINGS WAS PROVIDED BY LEWIS COUNTY GIS DATA & GOODMAN LAND SURVEYING, INC. TOPOGRAPHIC INFORMATION WAS NOT FIELD VERIFIED BY FULLER DESIGNS.

202

### LEGEND:

### LINETYPES:

EXISTING	PROPOSED
· · · ·	
— X — X —	
·	·
	— XX—
E	— — — — — E —
OE	—— OE——
OT	OT
G	— G —
W	— W —
SS	— SS —
—— FM ——	—— FM ——
ST	ST
	SF

### SYMBOLS:

EXISTING	PROPOSED
* ****	XXX.XX
S	
(ST)	(ST)
0 _{c0}	0
Owell	
$\bowtie$	M
Ŭ	Ø
	00
$\triangleleft$	<
	С
Ø	
	-0-
$\bigcirc$	$\bigcirc$
HATCH:	
EXISTING	PROPOSED

DESC.
LOT LINE
EASEMENT
FENCING
DITCH/WETLAND
RD CENTERLINE
RIGHT OF WAY
EDGE OF PAVEMENT
EDGE OF GRAVEL
BUILDING
CONTOUR LINE (MAJOR)
CONTOUR LINE (MINOR)
ELECTRICAL UNDERGROUND
ELECTRICAL OVERHEAD
TELECOMMUNICATION
GAS MAIN
WATER MAIN
SEWER MAIN
FORCE MAIN
STORM MAIN
SILT FENCE
PRUJECT AREA
CONSTRUCTION PHASE LINE

DESC. FLOW DIRECTION ARROW SPOT ELEVATION SEWER MANHOLE STORM MANHOLE CATCH BASIN INSPECTION PORT WELL WATER METER BOX WATER VALVE HYDRANT BLOWOFF ASSEMBLY TRUST BLOCK END CAP GAS VALVE POLE TREE

DESC. ASPHALT PAVEMENT GRAVEL AREA CONCRETE SIDEWALK

### **ABBREVIATIONS:**

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
AC	ASPHALT CONCRETE
3CR	BEGIN CURB RETURN
3M	BENCHMARK
	RECIN VERTICAL CURVE STATION
	DEGIN VENTICAL CURVE STATION
SCVE	BEGIN VERTICAL CURVE ELEVATION
CAIV	CABLE TELEVISION
В	CATCH BASIN
N	CENTERLINE
-MP	CURRUGATED METAL PIPE
0	CLEAN OUT
Y	CUBIC YARD
)	DIAMETER
E.	ELECTRICAL
CR	END CURB RETURN
LEV	ELEVATION
IVCS	END VERTICAL CURVE STATION
VCF	END VERTICAL CURVE ELEVATION
.^	
F	FINISH FLOOR
G	FINISH GRADE
Н	FIRE HYDRANT
· · 1	FLOW LINE
IVI	FURCE MAIN
5	GAS
B	GRADE BREAK
	CAS METER
	GAS METER
sν	GATE VALVE
IDPE	HIGH DENSITY POLYETHYLENE
IP	HIGH POINT
=	
	CALCULATED CURVE VALUE
	LENGTH
CV	IENGTH VERTICAL CURVE
.F	
1	METER
1AX	MAXIMUM
ин	MAN HOLF
41 T	
/IIN	MINIMUM
1J	MECHANICAL JOINT
IFC	NOT FOR CONSTRUCTION
	OVER HEAD FOWER
)	POWER
°C	POINT OF CURVATURE
ין	POINT OF INTERSECTION
OB	POINT OF BEGINNING
°0C	POINT OF CONNECTION
RC	POINT OF REVERSE CURVATURE
VC	PULY-VINYL CHLORIDE
2	RADIUS
2CP	REINFORCED CONCRETE PIPE
	RUUF DRAIN
KF C	RELEASED FOR CONSTRUCTION
ROM	RIGHT OF WAY
RPBA	REDUCED PRESSURE BACKELOW ASSEMBLY
2	SLOPE
	SQUARE FUUT
SD	STORM DRAIN
SS	SANITARY SEWER
T.	STORM
) T A	
	STATION
ŚW	SIDEWALK
-	TELEPHONE
B	TRUST BLOCK
5	
C	TUP OF CURB/CONCRETE
ESC	TEMPORARY EROSION AND SEDIMENT
	CONTROL
6	
۲۲	ITPICAL
JGP	UNDERGROUND POWER
V	WATER
• VI	
VL.	WAILK LEVEL
VM	WAIER MEIER
VV	WATER VALVE
_	
-	
0	FERVENI

DRAWING CONTENTS:

DELTA

- CO.1 CIVIL COVER SHEET C1.1 – EX. CONDITION, DEMO AND TESC PLAN
- C2.1 HORIZONTAL CONTROL PLAN
- C2.2 LOT LAYOUT
- C3.1 OVERALL GRADING PLAN C4.1 – FULL SITE STORM DRAINAGE PLAN
- C5.1 FULL SITE SEWER PLAN
- C6.1 FULL SITE WATER PLAN

JACKSON VILLA 4

SECTION 03 TOWNSHIP 13N RANGE 02W CHEHALIS, WASHINGTON

UTILITIES LOCATE NOTE:

EXISTING UTILITIES LOCATION SHOWN IN THIS PLAN SET IS BASED ON INFORMATION OBTAINED FROM VARIOUS RECORDS RESEARCH, ASBUILT DATA, AND FIELD MEASUREMENTS. FULLER DESIGNS ASSUMES NO RESPONSIBILITY FOR EXACT LOCATION OF UTILITIES EITHER SHOWN OR NOT SHOWN IN THESE DRAWINGS. CONTRACTOR SHALL VERIFY THE EXACT SIZE, DEPTH, LOCATION, AND ARRANGEMENT OF ALL UTILITIES PRIOR TO CONSTRUCTION. CONTRACTOR SHALL CALL UNDERGROUND LOCATE AT 811 PRIOR TO PERFORMING CONSTRUCTIONS ACTIVITIES.

PROJECT SPECIFICATIONS:

THE WORK ON THIS PROJECT SHALL BE PERFORMED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS FOR RD, BRIDGE AND MUNICIPAL CONSTRUCTION, 2020 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION (WSDOT) (HEREAFTER "STANDARD SPECIFICATIONS").

ALSO INCORPORATED INTO THESE CONTRACT DOCUMENTS BY REFERENCE ARE:

- A. MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD)
- B. CITY RD STANDARDSC. CITY DRAINAGE STANDARDS
- D. THE INTERNATIONAL BUILDING CODE (IBC)

CURRENT EDITIONS OF THESE STANDARDS SHALL BE USED WHICH EXIST ON THE DATE OF CONTRACT ACCEPTANCE.

CONTRACTOR SHALL OBTAIN COPIES OF THESE PUBLICATION AT CONTRACTOR'S OWN EXPENSE.

THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL LABOR, MATERIALS, TOOLS, EQUIPMENT, TRANSPORTATION, SUPPLIES AND INCIDENTALS REQUIRED TO COMPLETE ALL WORK SHOWN ON THESE DRAWINGS. ONCE WORK IS COMPLETED CONTRACTOR SHALL OBTAIN ACCEPTANCE BY THE COUNTY AND PROJECT ENGINEER.

THE INTENT OF THESE DRAWINGS IS TO PRESCRIBE A COMPLETE PROJECT. OMISSIONS FROM THE DRAWINGS OF DETAIL OF WORK WHICH IS NECESSARY TO CARRY OUT THE INTENT OF THE DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR FROM PROVIDING THE OMITTED WORK.

ANY PROPOSED ALTERATIONS BY THE CONTRACTOR AFFECTING THE REQUIREMENTS AND INFORMATION IN THESE DRAWINGS SHALL BE IN WRITING AND WILL REQUIRE APPROVAL OF THE ENGINEER AND INSPECTOR.

WORK IN RIGHT OF WAY:

CONTRACTOR SHALL OBTAIN A RIGHT OF WAY PERMIT PRIOR TO COMMENCING ANY WORK LOCATED IN RIGHT OF WAY. ALL WORK PERFORMED IN THE RIGHT OF WAY SHALL ADHERE TO DRAWINGS, STANDARD SPECIFICATIONS, AND REQUIREMENTS OUTLINED IN THE RIGHT OF WAY PERMIT.

RECORD DRAWINGS:

FULLER DESIGNS IS REQUIRED BY THE CITY TO PROVIDE RECORD DRAWING CERTIFICATION PRIOR TO FINAL CITY ACCEPTANCE. FULLER DESIGNS WILL NOT CERTIFY RECORD DRAWINGS WITHOUT INSPECTION OF BELOW GRADE UTILITIES AND STRUCTURES. PRIOR TO BACKFILLING, CONTRACTOR SHALL NOTIFY FULLER DESIGNS OF NECESSARY INSPECTIONS.

CONTRACTOR TO VERIFY ALL DIMENSIONS IN FIELD AND NOTIFY ENGINEER OR INSPECTOR OF INCONSISTENCIES PRIOR TO START OF CONSTRUCTION. CONTRACTOR SHALL MAINTAIN ONE SET OF THE CONTRACT DRAWINGS THAT SHALL INCLUDE: ANY ALTERATIONS OR LOCATION OF UNDERGROUND UTILITIES ENCOUNTERED DURING THE PROGRESS OF THE PROJECT, ANY ALTERATIONS MADE TO THE IMPROVEMENTS BEING INSTALLED. MARKED DRAWINGS SHALL BE CLEAR AND LEGIBLE. DRAWINGS SHALL BE MARKED "RECORD DRAWINGS" AND SHALL BE SUBMITTED TO THE ENGINEER UPON PROJECT COMPLETION.

CONTRACTOR LIABILITY NOTE:

CONTRACTOR AGREES TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR THE JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS PROJECT. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY THROUGHOUT PROJECT EXECUTION AND NOT BE LIMITED TO WORKING HOURS. CONTRACTOR SHALL PROGRESS WORK IN A MANOR THAT SHALL INDEMNIFY AND HOLD FULLER DESIGNS HARMLESS FROM ALL LIABILITY IN CONNECTION WITH CONTRACTOR'S PERFORMED WORK.

REMOVAL OF UNSUITABLE MATERIALS:

IF UNSUITABLE MATERIALS AS DEFINED BY THE STANDARD SPECIFICATIONS ARE ENCOUNTERED, THIS MATERIAL SHALL BE REMOVED TO THE DEPTH REQUIRED BY THE ENGINEER OR INSPECTOR AND REPLACED WITH SUITABLE MATERIAL.

UNSUITABLE MATERIAL SHALL BE REMOVED FROM THE SITE AND HAULED TO A WASTE SITE OBTAINED BY THE CONTRACTOR. PRIOR TO REMOVAL, CONTRACTOR SHALL NOTIFY PROJECT OWNER SO MEASUREMENT/PAYMENT CAN BE MADE PER TON OF UNSUITABLE MATERIAL REMOVED.

EROSION CONTROL NOTE:

EROSION CONTROL MEASURES ARE NOT LIMITED TO THE ITEMS ON THESE PLANS. CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION AND MAINTENANCE OF ALL EROSION CONTROL MEASURES. NO SILTATION OF EXISTING OR PROPOSED DRAINAGE STRUCTURES WILL BE PERMITTED. CARE SHALL BE TAKEN TO PREVENT MIGRATION OF SOILS TO ADJACENT PROPERTIES. DISTURBED EARTH SHALL BE STABILIZED AS REQUIRED BY THE STANDARD SPECIFICATIONS. INDIVIDUAL DESIGNATED TO MONITOR EROSION CONTROL FACILITIES DURING CONSTRUCTION SHALL HAVE CESCL CERTIFICATION.

GENERAL NOTES:

CONTRACTOR SHALL COORDINATE ALL CONSTRUCTION ACTIVITIES WITH ADJACENT PROPERTY OWNERS. DRIVEWAYS AND UTILITY SERVICES SHALL REMAIN ACCESSIBLE AT ALL TIMES.

AREAS DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO THEIR ORIGINAL PRE-CONSTRUCTION STATE OR BETTER UPON COMPLETION OF WORK.

THESE DRAWINGS AND ALL ACCOMPANYING MATERIALS ARE COPYRIGHTED. UNAUTHORIZED COPYING OF THESE DOCUMENTS IS FORBIDDEN WITHOUT THE WRITTEN CONSENT OF FULLER DESIGNS.

TESC NOTES:

- $\langle T1 \rangle$ INSTALL SILT FENCE.
- $\langle T_2 \rangle$ INSTALL 100' LONG CONSTRUCTION ENTRANCE.
- $\langle T3 \rangle$ INSTALL INLET PROTECTION TO EX CATCH BASIN.
- T4 INSTALL STRAW BALE BARRIER AS SHOWN. BALES TO BE INSTALLED ALONG EXISTING DITCH SHOWN ON THIS SHEET. BALES WILL BE REMOVED ONCE SITE IS STABILIZED.
- $\langle T5 \rangle$ INSTALL TWO LAYERS OF WATTLES AND A SWATH OF SILT FENCE AROUND THE INLET FOR CULVERT INLET PROTECTION.

DEMOLITION NOTES:

- $\langle D1 \rangle$ EX. FENCE TO BE REMOVED.
- $\langle D2 \rangle$ EX. STRUCTURE TO BE REMOVED.
- $\langle D3 \rangle$ EX. TREE TO BE REMOVED.

NOTES TO CONTRACTOR:

- 1. ALL EXPOSED SOIL SURFACES SHALL BE SEEDED WITH AN EROSION CONTROL SEED MIX OR HYDROSEEDED IF NOT WORKED WITHIN 7 CALENDAR DAYS FROM MAY 1 TO SEPTEMBER 30. SOIL SHALL BE COVERED WITHIN 2 DAYS FROM OCTOBER 1 TO APRIL 30.
- 2. SEEDED AREAS WILL BE COVERED WITH MULCH, HAY OR OTHER PROTECTIVE COVERING APPROVED BY THE ENGINEER TO PREVENT WASHOUT DURING RAIN EVENTS.
- 3. CONTRACTOR SHALL APPLY WATER TO GRAVEL SURFACES DURING CONSTRUCTION TO MINIMIZE FUGITIVE DUST.
- 4. ROUTINE INSPECTION AND MAINTENANCE OF ALL INSTALLED EROSION AND SEDIMENT CONTROL BMPS, ESPECIALLY AFTER STORMS, IS REQUIRED.
- 5. PERIODIC STREET CLEANING MAY BE NECESSARY TO REMOVE ANY SEDIMENT TRACKED OFF THE SITE. 6. IN THE EVENT PROPOSED BMPS FAIL, APPROPRIATE
- MEASURES MUST BE TAKEN TO STOP SEDIMENTS FROM ENTERING WATERWAYS.
- 7. NO CONSTRUCTION OR DEMOLITION WILL BE ALLOWED IN PHASE 2 AREA UNTIL STATE AUTHORIZATION.

PRELIMINARY

	LINE TABLE	
Line #	Bearing	Length
L1	S49° 58' 51.00"W	472.03
L2	N40°01'09.00"W	10.00
L3	S49°58′51.00"W	145.84
L4	N42°17'06.00"W	272.52
L5	N47°40'14.69"E	543.52
L6	N37°13′46.00"W	154.81
L7	N48° 33' 44.00"E	171.73
L8	S35°44'51.00"E	168.43

CUR	ve ta	BLE
Curve #	Radius	Length
C1	161.44	68.03

	LINE TABLE	
Line #	Bearing	Length
L1	S42°09'06.82"E	266.91
L2	S41°51'35.42"E	248.76
L3	S42°09'06.82"E	129.30
L4	N42°09'06.33"W	105.00
L5	N47° 50' 53.18"E	461.95
L6	N47° 50' 53.18"E	96.01

CURVE TABLE		
Curve #	Radius	Length
C5	200.00	9.94
C9	25.00	40.23
C10	25.00	15.13
C11	12.36	16.91
C12	12.00	16.84
C13	12.00	20.05
C14	12.00	18.85
C15	12.00	16.84
C16	12.00	16.84
C17	10.75	9.46
C18	10.53	18.73
C19	12.44	17.83
C20	29.28	28.42

CURVE TABLE		
Curve #	Radius	Length
C21	12.00	16.84
C22	12.36	16.91
C23	12.92	16.00
C24	12.00	18.85
C25	25.00	40.23
C26	25.00	38.31

STORMWATER NOTES:

- ⟨STÌ⟩ EX. CB#1 RIM = 274.65 IN 12" IE = 272.7 (N) OUT 12" IE=272.45 (SW)
- €T2) EX. CB#2 RIM = 291.72 IN 18" IE = 287.99 (SE) OUT 18" IE=288.06 (SW)
- IN 8" IE = 247.67 (N) IN 12" IE = 247.62 (NE) OUT 12" IE = 247.47 (SW)
- €T4 EX. CB#4 RIM = 252.73 IN 6" IE = 250.93 (S)OUT 8" IE = 250.38 (N)
- (T5) INSTALL SOLID LID CONTROL STRUCTURE (TYP OF 9)
- (T) INSTALL CB CONTECH 1 CARTRIDGE STORMFILTER (TYP OF 6)
- (T) INSTALL CB CONTECH 2 CARTRIDGE STORMFILTER (TYP OF 2)
- TR INSTALL CONTECH CHAMBERMAXX STORMWATER RETENTION

PRELIMINARY

- (ST9) INSTALL STORM PIPE
- (TI) INSTALL CB TYPE 1 (TYP OF 5)
- (ST1) INSTALL CB GRATE LID TYPE 2 (TYP OF 1)
- (T12) INSTALL CB SOLID LID TYPE 2 (TYP OF 5)
- €T13 INSTALL DRAIN PIPE
- (TT) INSTALL BIOSWALE DITCH

SEWER NOTES:

- \$\$\$\$ EX. SSMH#1 RIM = 275.32 10" IE = 267.16 (NE) 10" IE = 267.08 (SW)
- EX. SSMH#2 RIM = 290.78 10" IE = 284.08 (NW) 6" IE = 284.16 (E) 10" IE = 283.24 (SW)
- \$\$\$ EX. SSMH#3 RIM = 250.21 10" IE = 243.86 (NE) 10" IE = 243.67 (SW)
- EX. SSMH#4 RIM = 236.58 10" IE = 229.95 (NE) 10" IE = 229.77 (NW) CHANNEL CAPED FL = 230.26 (SE)
- \$\$\$ EX. SSMH#5 RIM = 270.02 8" IE = 262.42 (E) 8" IE = 262.39 (SW)

PRELIMINARY

FOR PERMIT ONLY

\$\$\$\$ EX. SSMH#6 RIM = 252.26 8" IE = 244.15 (NE) 8" IE = 244.05 (SW)

Jackson Villa Expansion 4

Chehalis, WA

Preliminary Drainage and Erosion Control Report

Fuller Designs Project No. 2084

March 4, 2021

Prepared by:

1101 Kresky Ave., Centralia, WA 98531; (360) 807-4420

PRELIMINARY DRAINAGE AND EROSION CONTROL REPORT

Jackson Villa Expansion 4

Chehalis, Washington March 4, 2021

Project Information

Prepared for:	Jackson Villa Expansion 4
Contact:	Lakewood Industries
	12030 Sunrise Valley Dr. STE 450
	Reston, VA 20194

Reviewing Agency

Jurisdiction:	City of Chehalis
Contact:	Trent Lougheed, City Engineer

References

2012 Stormwater Management Manual for Western Washington as Amended in December 2014 (The 2014 SWMMWW)

Project Engineer

Prepared by: Fuller Designs, Inc. 1101 Kresky Ave. Centralia, WA 98531 (360) 807- 4420

Contact: Aaron Fuller, PE

"I hereby certify that this Preliminary Drainage and Erosion Control Report for the Jackson Villa Expansion 4 project has been prepared by me or under my supervision and meets minimum standards of the City of Chehalis and normal standards of engineering practice. I hereby acknowledge and agree that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed by me."

Table of Contents

PRELIMINARY DRAINAGE AND EROSION CONTROL REPORT

TABLE OF CONTENTS

- SECTION 1 PROPOSED PROJECT DESCRIPTION
- SECTION 2 EXISTING CONDITONS DESCRIPTION
- SECTION 3 OFFSITE ANALYSIS REPORTS
- SECTION 4 APPLICABLE MINIMUM REQUIREMENTS
- SECTION 5 PERMANENT STORMWATER CONTROL PLAN Site Hydrology: Total Runoff Pre and Post Developed Comparison Flow Control System Design and Analysis Water Quality System Design and Analysis
- SECTION 6 CONSTRUCTION SWPPP Project Specific Construction BMPs
- SECTION 7 SPECIAL REPORTS AND STUDIES
- SECTION 8 OPERATION AND MAINTENANCE MANUAL
- SECTION 9 DRAFT STORMWATER MAINTENANCE AGREEMENT

SECTION 1 – PROPOSED PROJECT DESCRIPTION

Site Address:	0 Jackson Hwy Chehalis, WA 98532
Parcel Number(s):	010799001000
Total Site Area:	4.32 Acres
Zoning:	UGA – Residential
Sec, Twn, Rge:	Section 03 Township 13N Range 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD PRCL B BL- 09-148 335384

Proposed Improvements

The site is located on Jackson Highway adjacent to the intersection with Kennecott Road in South Chehalis. The project proposes to expand the existing Jackson Villas multi-family project onto this parcel. A total of 65 dwelling units are proposed with a 23-plex town home style building and 21 duplex buildings. Curb gutter sidewalk and private roads are proposed through the site. A mail cluster and bus pullout is proposed near the phase 1 entrance to the project site. Onsite parking will consist of a single car garage and 2 adjacent spaces per dwelling unit.

Stormwater runoff from the proposed impervious areas will be mitigated in a phased approach. Phase 1 will consist of collection of runoff in Contech filtration catch basins and underground detention piping. Mitigated runoff will be released to the phase 2 wetland area. Once phase 2 is approved, additional ponds will be constructed to treat and detain stormwater.

Phase 2 area of the site (southern half) has a wetland and is planned to be filled. A report describing the size, type, and quality of wetland has been prepared. Also a wetland bank use plan has been prepared for filling activities. Phase timing is dependent on wetland bank use approval.

The project will be served by:

City of Chehalis City of Chehalis Lewis County PUD Centurylink & Comast Lemay Water Sewer Electricity Telecommunications Refuse & Recycling

SECTION 2 – EXISTING CONDITONS DESCRIPTION

The lot currently fronts Jackson Highway. The lot has two existing detached garages primarily used by the single-family residence located on the property to the SE of the site.

These garages are to be demolished. The site is fully fenced with a small gate on the NW corner of the property.

There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property.

Vegetation onsite is consistent with medium to low density residential lots. Grasses and small shrubs are predominant throughout the site. The subject site consists of a sloped, unimproved property vegetated with a mix of pasture grass, teasel, thistles, and a few scattered willow clumps in the southern area.

The south half of the site has a wetland area which will be protected initially through phasing and then removed.

Soils in the area include Lacamas Silt Loam and Galvin Silt Loam. A soil survey indicates this area is hydraulic group C/D, is moderate to poorly drained, and has moderate to poor infiltration potential.

SECTION 3 – OFFSITE ANALYSIS REPORTS

The area immediately adjacent to the proposed project properties is:

- West Residential UGA and Kennecott Road
- South Residential UGA and Jackson Highway
- East Residential UGA
- North Residential UGA and Hosanna Lane

Properties to the north and west of the site are separated by adjacent roadways. Hosanna and Kennecott roads capture runoff and rout around the site. A small culvert under the Hosanna/Kennecott Intersection does send some runoff from northern properties down a ditch along the project's west boundary. Some of this runoff does flow down into the site due to incomplete ditches. This runoff will be captured and fully routed around the site in the proposed condition. A small portion of Jackson highway does contribute to a roadside ditch on the north side of the Highway. This runoff runs through the south boundary of the site and will continue to do so in the proposed condition. Properties to the south and east are hydraulically lower than the project site and do not contribute runoff.

The proposed project plans to maintain the natural drainage paths by releasing stormwater to the south culvert as it currently does. This area has not been flagged as a possible stormwater problem area.

A downstream analysis shows mitigated runoff discharging to a culvert under Jackson highway. This runoff then travels west toward the first phases of Jackson Villas in defined drainage ditches. After more than a quarter mile of manmade conveyance it discharges to a wet areas near Interstate Avenue in the industrial park of Chehalis. After approximately 2 miles runoff flows under Interstate 5 to the Dillenbaugh Creek.

SECTION 4 – APPLICABLE MINIMUM REQUIREMENTS

The minimum requirements for stormwater development and redevelopment sites are listed in Volume 1 chapter 2 of the 2014 Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW). Not all minimum requirements of this section apply to all projects. Determination of applicable minimum requirements is based on section 2.4 of the WSDOE SWMMWW.

Based on the thresholds given in figures 2.4.1 and 2.4.2 of the SWMMWW, the proposed Jackson Villa 4 project will create more than 5000 square feet of new impervious surface and thus must address all minimum requirements. These requirements as they apply to the project are discussed in more detail below.

<u>Minimum Requirement #1 – Preparation of Drainage Control Plans:</u> A Stormwater Site Plan has been prepared (see Erosion Control and Drainage Plans).

<u>Minimum Requirement #2 – Construction Stormwater Pollution Prevention Plan</u> A Construction Stormwater Pollution Prevention Plan (SWPPP) has been prepared. See section 6.

Minimum Requirement #3 – Source Control of Pollution

All known, available, and reasonable source control BMPs shall be applied to the project to limit pollutants from encountering stormwater. Construction specific BMP's will be provided during construction (see Section 6 SWPPP for reference).

<u>Minimum Requirement #4 – Preservation of Natural Drainage Systems and Outfalls</u> Stormwater leaving the site will be either dispersed toward natural drainages or directed toward the southern culvert where all site runoff currently goes. The same discharge points will be used in both pre and post development for both phases. Improvements onsite do not propose to impact natural drainages

Minimum Requirement #5 – On-site Stormwater Management

This project is inside the UGA and is on a site smaller than 5 acres. Therefore, List #2 from Section 2.5.5 in Volume I of the SWMMWW is applicable.

The proposed Best Management Practice's (BMP's) are as follows:

Lawn and Landscape Areas:

• All disturbed areas not being covered with a hard surface and all new lawn and landscape areas will contain soils meeting the Post-Construction Soil Quality and Depth (BMP T5.13) requirements.

Roof Areas:

- Roof area on the project shall use Downspout Dispersion (T5.10B), or Perforated Stubouts (T5.10C).
- Roof area will be connected directly to onsite detention systems.

Other Hard Surface Areas:

• Stormwater runoff from the new paved and gravel areas will be routed to the proposed stormwater treatment and attenuation.

Minimum Requirement #6 – Runoff Treatment

This project proposes to create more than 5000 square feet of pollution-generating hard surface (PGHS) and is subject to this minimum requirement. Each basin in the project was modeled using the 2012 Western Washington Hydrograph Model (WWHM) in accordance with the SWMMWW.

The project will be scheduled to temporarily discharge to the southern wetland in phase 1. Runoff from phase 1 will be treated using 8 separate Contech stormwater filter catch-basins. These catch-basins were sized according to manufactures direction using the 2-year offline flowrate. Offline flow rate is appropriate for these devices as higher flows are bypassed via internal weir. Cartridges are rated to handle approximately 12.5gpm each. 6 basins in phase 1 have lower than 12.5gpm treatment rate and 2 basins are slightly higher. Therefore, 6 single cartridge structures and 2 dual cartridge structures were used to treat phase 1 flow.

Once wetland bank use is approved phase 2 will fill the lower half of the site and utilize more conventional stormwater treatment systems. Shallow and low slope detentions ponds will be utilized in phase 2. Pond edges will compost amended filter strips which will accept sheet and shallow concentrated flows from the phase 2 area. Phase 1 discharge piping will be routed bypass phase 2 treatment systems.

Minimum Requirement #7 – Flow Control

The development pre and post runoff rates were compared based on existing and proposed land coverage types using the WWHM2012 continuous inflow model. Stormwater from this site will be routed to onsite ponds and underground detention piping. Control structures specially design for each basin will be placed downstream of each detention structure to mitigate release rates back to predeveloped levels in accordance with the SWMMWW.

Minimum Requirement #8 – Wetlands Protection

The thresholds identified in Minimum Requirement #6 – Runoff Treatment, and Minimum Requirement #7 – Flow Control are used to determine the applicability of this requirement to discharges to wetlands. Since Minimum Requirements #6 and #7 are properly mitigated, Minimum Requirement #8 is considered satisfied for phase 1. Also phase 1 adheres to the standard 100' buffer recommendation. For phase 2 the lower wetland area will be filled through wetland bank credit application.

Minimum Requirement #9 – Operation and Maintenance

Maintenance of storm drainage facilities (bioswales, catch basins, ponds, etc..) will be the responsibility of the landowner whose property the individual structure

is located on. All improvements within Jackson Highway, and Kennecott Road right-of-way (roadside ditches, culverts, etc..) will be maintained by Lewis County. Onsite stormwater facilities will be maintained by the property owner or HOA. A storm drainage O&M plan is included in section 8 and a draft stormwater maintenance agreement is in section 9 of this report. Pending approval of this preliminary plan a notarized copy of the agreement will be submitted to the City.

SECTION 5 – PERMANENT STORMWATER CONTROL PLAN

The permanent storm plan is included in the civil plans for this project. The site will utilize many different mitigation facilities as described in Minimum requirements 6 and 7 of the previous section. This project will also utilize Post-Construction Soil Quality and Depth in accordance with BMP T5.13 from Chapter 5 of the SWMMWW.

To meet DOE recommendations and City requirements, permanent stormwater facilities must both clean and control flowrates from the proposed development. Included in this section is: basin map, a pre/post basin flow control analysis, and basin water quality analysis. These calculations were used to size the previously described stormwater facilities on the project site and show compliance with adopted regulations.

PRE DEVELOPED CONDITION:	5
BASIN 1	BA
BASIN B1-A	(EL
(EL1-A) EX PASTURE = 13515 SF	ΒA
BASIN B1-B	(EL
(EL1-B) EX PASTURE = 2356.5 SF	ΒA
BASIN B1-C	(EL
(EL1-C) EX PASTURE = 7947 SF	ΒA

<section-header>

General Model Information

Project Name:	Basin B-1A
Site Name:	Jackson Villas #4
Site Address:	
City:	Chehalis
Report Date:	1/22/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin B-1A Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.297
Pervious Total	0.297
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.297
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin B-1A Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.105
Pervious Total	0.105
Impervious Land Use ROADS MOD ROOF TOPS FLAT	acre 0.119 0.073
Impervious Total	0.192
Basin Total	0.297
Element Flows To: Surface Tank 1	Interflow Tank 1

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing	fo olitiku olomata
Tank 1	facility depth
Dimensions	
Depth:	4 ft.
Tank Type:	Circular
Diameter:	4 ft.
Length:	185 ft.
Infiltration On	
Infiltration rate:	1
Infiltration safety factor:	1
Total Volume Infiltrated (a	c-ft.): 25.695
Total Volume Through Ris	er (ac-ft.): 10.54
Total Volume Through Fa	cility (ac-ft.): 36.235
Percent Infiltrated	70.91
Total Precip Applied to Fa	cility: 0
Total Evan From Facility:	0
Discharge Structure	orifice dimensions
Riser Height:	30ft
Riser Diameter:	24 in
Orifico 1 Diamotor:	0.5 in Elevation: 0 ft
Orifice 2 Diameter:	0.5 m. Elevation: 2 16775 ft
Office 2 Diameter:	0.025 III. Elevation: 2.000000000000000000000000000000000000
	0.4 In. Elevation.2.90000000000007 It.
Element Flows To:	
Outlet 1 Out	let 2

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.003	0.000	0.001	0.003
0.0889	0.005	0.000	0.002	0.005
0.1333	0.006	0.000	0.002	0.006
0.1778	0.007	0.000	0.002	0.007
0.2222	0.007	0.001	0.003	0.007
0.2667	0.008	0.001	0.003	0.008
0.3111	0.009	0.001	0.003	0.009
0.3556	0.009	0.002	0.004	0.009
0.4000	0.010	0.002	0.004	0.010
0.4444	0.010	0.003	0.004	0.010
0.4889	0.011	0.003	0.004	0.011
0.5333	0.011	0.004	0.005	0.011
0.5778	0.011	0.004	0.005	0.012
0.6222	0.012	0.005	0.005	0.012
0.6667	0.012	0.005	0.005	0.012
0.7111	0.013	0.006	0.005	0.013
0.7556	0.013	0.007	0.005	0.013
0.8000	0.013	0.007	0.006	0.013
0.8444	0.013	0.008	0.006	0.014
0.8889	0.014	0.008	0.006	0.014
0.9333	0.014	0.009	0.006	0.014
0.9778	0.014	0.010	0.006	0.014
1.0222	0.014	0.010	0.006	0.014
1.0667	0.015	0.011	0.007	0.015
1.1111	0.015	0.012	0.007	0.015
1.1556	0.015	0.012	0.007	0.015

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889	0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.013 0.013 0.013 0.013	0.013 0.014 0.014 0.015 0.016 0.017 0.017 0.018 0.019 0.020 0.021 0.022 0.022 0.023 0.024 0.025 0.025 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.037 0.038 0.039 0.039 0.039 0.040 0.041 0.041 0.041 0.041 0.043 0.043 0.043 0.043 0.045 0.045 0.045 0.046 0.047	0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.0011 0.015 0.015 0.016 0.019 0.020 0.020 0.020 0.021 0.022 0.023 0.023 0.024 0.025 0.025 0.026	0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.01
3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.014 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009	0.043 0.044 0.045 0.045 0.046 0.047 0.047 0.048 0.048 0.049 0.049 0.049 0.049 0.050 0.050 0.051 0.051	0.023 0.024 0.025 0.025 0.026 0.026 0.026 0.026 0.027 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029 0.029 0.030	0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.297
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.105 Total Impervious Area: 0.192

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 0.012336 2 year 0.020297 5 year 10 year 0.025889 0.033141 25 year

0.038611
0.044101

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.007105
0.009345
0.011045
0.013454
0.015447
0.017619

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Predeveloped	wiitigat
1956	0.012	0.007
1957	0.022	0.009
1958	0.008	0.005
1959	0.010	0.007
1960	0.017	0.008
1961	0.011	0.006
1962	0.004	0.005
1963	0.023	0.009
1964	0.013	0.007
1965	0.014	0.007

1966 1967	0.007 0.011	0.006 0.008
1968	0.009	0.007
1969 1970	0.005	0.005
1971	0.012	0.007
1972	0.025	0.009
1973	0.010	0.007
1974 1975	0.009	0.006
1976	0.017	0.007
1977	0.003	0.006
1978	0.014	0.007
1979	0.022	0.007
1981	0.024	0.008
1982	0.009	0.008
1983	0.018	0.009
1984	0.014	0.007
1986	0.019	0.009
1987	0.035	0.009
1988	0.007	0.007
1909	0.031	0.000
1991	0.038	0.019
1992	0.007	0.006
1993	0.005	0.005
1995	0.012	0.008
1996	0.019	0.009
1997	0.011	0.007
1998	0.015	0.007
2000	0.016	0.008
2001	0.002	0.005
2002	0.014	0.010
2003	0.013	0.003
2005	0.010	0.006
2006	0.014	0.008
2007	0.015	0.010
2000	0.002	0.020

Ranked Annual Peaks

Ranked AnnualPeaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.03790.0284 2345678 0.0355 0.0192 0.0352 0.0107 0.0319 0.0098 0.0308 0.0098 0.0250 0.0094 0.0094 0.0239 0.0225 0.0090 9 0.0224 0.0088 0.0224 0.0088 10 11 0.0193 0.0087
12	0.0193	0.0086
13	0.0183	0.0085
14	0.0174	0.0084
15	0.0173	0.0083
16	0.0156	0.0080
17	0.0154	0.0078
18	0.0154	0.0077
20 21	0.0145 0.0142 0.0141	0.0077 0.0076 0.0076
22	0.0141	0.0075
23	0.0136	0.0074
24	0.0135	0.0073
25	0.0135	0.0073
26 27 28	0.0128 0.0123 0.0122	0.0072
29 30	0.0122 0.0120 0.0112	0.0070 0.0069
31	0.0109	0.0069
32	0.0108	0.0068
33 34 35	0.0103 0.0103 0.0103	0.0066
36	0.0101	0.0066
37	0.0100	0.0064
38	0.0096	0.0064
39	0.0088	0.0064
40	0.0085	0.0062
41	0.0085	0.0062
42	0.0075	0.0061
43	0.0075	0.0059
44	0.0072	0.0059
45	0.0067	0.0057
46	0.0065	0.0056
47	0.0054	0.0055
48	0.0048	0.0055
49	0.0047	0.0054
50	0.0044	0.0053
51	0.0038	0.0050
52	0.0031	0.0050
53	0.0024	0.0049

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0062	13769	3758	27	Pass
0.0065	11831	2827	23	Pass
0.0068	10296	2156	20	Pass
0.0072	9028	1683	18	Pass
0.0075	7960	1307	16	Pass
0.0078	6938	994	14	Pass
0.0081	6101	793	12	Pass
0.0085	5334	627	11	Pass
0.0088	4685	475	10	Pass
0.0091	4131	363	8	Pass
0.0094	3609	283	7	Pass
0.0098	3172	188	5	Pass
0.0101	2782	137	4	Pass
0.0104	2427	132	5	Pass
0.0108	2117	124	5	Pass
0.0111	1879	124	6	Pass
0.0114	1679	123	7	Pass
0.0117	1508	121	8	Pass
0.0121	1368	120	8	Pass
0.0124	1187	118	9	Pass
0.0127	1062	116	10	Pass
0.0130	937	115	12	Pass
0.0134	845	113	13	Pass
0.0137	762	111	14	Pass
0.0140	688	109	15	Pass
0.0144	632	106	16	Pass
0.0147	572	104	18	Pass
0.0150	509	102	20	Pass
0.0153	449	100	22	Pass
0.0157	402	96	23	Pass
0.0160	356	94	26	Pass
0.0163	321	91	28	Pass
0.0167	292	89	30	Pass
0.0170	260	85	32	Pass
0.0173	240	78 74	32	Pass
0.0176	210	74 71	34	Pass
0.0100	190	7 I 66	30 27	Pass
0.0105	169	60	31 26	Pass Door
0.0100	100	02 56	30	Pass Door
0.0109	101	30 49	34 20	Pass
0.0195	100	40	30	Pass
0.0190	140	40	31 22	Pass
0.0199	140	40	32	Pass
0.0203	100	43	20	Pass
0.0200	129	4Z /1	32	Pass
0.0209	122	41	33	Pass
0.0212	100	1 0 28	3/	1 000 Dase
0.0210	103	38	37	1 000 Dase
0.0213	96	37	38	1 000 Dass
0.0222	88	36	30 40	1 000 Daee
0.0220	81	35	40 /3	1 000 Dase
0.0223	76	35	46 46	Pass
0.0202	10	55	-U	1 433

0.0235	68	33	48	Pass
0.0239	61	33	54	Pass
0.0242	56	32	57	Pass
0.0245	54	30	55	Pass
0.0248	50	29	58	Pass
0.0252	45	27	60	Pass
0.0255	41	24	58	Pass
0.0258	39	22	56	Pass
0.0262	36	21	58	Pass
0.0265	31	19	61	Pass
0.0268	26	16	61	Pass
0.0271	22	14	63	Pass
0.0275	18	12	66	Pass
0.0278	12	10	83	Pass
0.0281	1	6	85	Pass
0.0285	6	0	0	Pass
0.0288	5	0	0	Pass
0.0291	5	0	0	Pass
0.0294	5	0	0	Pass
0.0298	5	0	0	Pass
0.0301	5	0	0	Pass
0.0304	5 5	0	0	Pass
0.0307	5	0	0	Pass Dace
0.0311	4	0	0	Pass
0.0314	4	0	0	Pass
0.0317	4	0	0	Pass
0.0324	3	0	0	Pass
0.0327	3	Õ	Õ	Pass
0.0330	3	õ	õ	Pass
0.0334	3	õ	Õ	Pass
0.0337	3	Õ	Õ	Pass
0.0340	3	Ō	Ō	Pass
0.0344	3	0	0	Pass
0.0347	3	0	0	Pass
0.0350	3	0	0	Pass
0.0353	2	0	0	Pass
0.0357	1	0	0	Pass
0.0360	1	0	0	Pass
0.0363	1	0	0	Pass
0.0366	1	0	0	Pass
0.0370	1	0	0	Pass
0.0373	1	0	0	Pass
0.0376	1	0	0	Pass
0.0380	0	0	0	Pass
0.0383	0	0	0	Pass
0.0386	0	0	0	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1On-line facility volume:0.0286 acre-feetOn-line facility target flow:0.0298 cfs.Adjusted for 15 min:0.0167 cfs.Adjusted for 15 min:0.0167 cfs.WQ flow is 7.5gpm

Appendix Predeveloped Schematic

	R	Basin 0.30ac	B-1A			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-1B
Site Name:	Jackson Villas #4
Site Address:	
City:	Chehalis
Report Date:	1/22/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin B-1B

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.054
Pervious Total	0.054
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.054
Element Flows To: Surface	Interflow

Interflow

Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.054
Impervious Total	0.054
Basin Total	0.054
Flowert Flower Top	

Element Flows To:		
Surface	Interflow	Groundwater
Tank 1	Tank 1	

Routing Elements Predeveloped Routing

Mitigated Routing		— facilitv	/ depth
Tank 1			
Dimensions	K		
Depth:	4 ft.		
Tank Type:	Circular		
Diameter:	4 ft.		
Length:	57 ft.		
Infiltration On			
Infiltration rate:	1		
Infiltration safety factor:	1		
Total Volume Infiltrated (a	ac-ft.):	7.386	
Total Volume Through Ri	ser (ac-ft.):	0.616	
Total Volume Through Fa	acility (ac-ft.):	8.002	
Percent Infiltrated:		92.3	
Total Precip Applied to Fa	acility:	0	
Total Evap From Facility:	-	0	
Discharge Structure			orifice dimensions
Riser Height:	3.9 ft.		
Riser Diameter:	24 in.		K
Orifice 1 Diameter:	0.125 in. Elevatio	n:0 ft.	
Orifice 2 Diameter:	0.5 in. Elevatio	n:2.668 ft	
Orifice 3 Diameter:	0.1875 inElevatio	n:2.98583	333333333 ft.
Element Flows To:			
Outlet 1 Ou	utlet 2		

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.001	0.000	0.000	0.001
0.0889	0.001	0.000	0.000	0.001
0.1333	0.001	0.000	0.000	0.001
0.1778	0.002	0.000	0.000	0.002
0.2222	0.002	0.000	0.000	0.002
0.2667	0.002	0.000	0.000	0.002
0.3111	0.002	0.000	0.000	0.002
0.3556	0.003	0.000	0.000	0.003
0.4000	0.003	0.000	0.000	0.003
0.4444	0.003	0.001	0.000	0.003
0.4889	0.003	0.001	0.000	0.003
0.5333	0.003	0.001	0.000	0.003
0.5778	0.003	0.001	0.000	0.003
0.6222	0.003	0.001	0.000	0.003
0.6667	0.003	0.001	0.000	0.003
0.7111	0.004	0.002	0.000	0.004
0.7556	0.004	0.002	0.000	0.004
0.8000	0.004	0.002	0.000	0.004
0.8444	0.004	0.002	0.000	0.004
0.8889	0.004	0.002	0.000	0.004
0.9333	0.004	0.002	0.000	0.004
0.9778	0.004	0.003	0.000	0.004
1.0222	0.004	0.003	0.000	0.004
1.0667	0.004	0.003	0.000	0.004
1.1111	0.004	0.003	0.000	0.004
1.1556	0.004	0.003	0.000	0.004

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333	0.004 0.004 0.004 0.005 0	0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008	0.000 0	0.004 0.004 0.005 0
2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 2.1111	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0	0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.005	0.005 0
3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.004 0.004 0.004 0.003 0.002 0.002	0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015	0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008	0.005 0

3.7778	0.002	0.016	0.008	0.005
3.8222	0.002	0.016	0.009	0.005
3.8667	0.001	0.016	0.009	0.005
3.9111	0.001	0.016	0.034	0.005
3.9556	0.001	0.016	0.287	0.005
4.0000	0.000	0.016	0.679	0.005
4.0444	0.000	0.000	1.171	0.005
		\sim		
			facility v	volume = 697cf
				00101

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.054
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0 Total Impervious Area: 0.054

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 0.002243 2 year 0.00369 5 year 10 year 0.004707 25 year 0.006026 50 year 0.00702 100 year 0.008018

Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs)

	1 IUW(UIS)
2 year	0.000445
5 year	0.00062
10 year	0.000749
25 year	0.000927
50 year	0.00107
100 year	0.001223

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Predeveloped Mitigated Year

loui	i i cacvelopea	mingau
1956	0.002	0.000
1957	0.004	0.001
1958	0.001	0.000
1959	0.002	0.000
1960	0.003	0.001
1961	0.002	0.000
1962	0.001	0.000
1963	0.004	0.001
1964	0.002	0.000
1965	0.003	0.000

1966	0.001	0.000
1967	0.002	0.000
1969	0.002	0.000
1970	0.002	0.000
1971	0.002	0.000
1972	0.005	0.001
1973	0.002	0.000
1974	0.002	0.000
1975	0.006	0.000
1976	0.003	0.000
1977	0.001	0.000
1978	0.002	0.000
1979	0.004	0.000
1981	0.002	0.000
1982	0.004	0.000
1983	0.003	0.001
1984	0.003	0.000
1985	0.001	0.000
1986	0.004	0.001
1987	0.006	0.001
1988	0.001	0.000
1989	0.002	0.000
1990	0.000	0.001
1992	0.007	0.001
1993	0.001	0.000
1994	0.001	0.000
1995	0.002	0.001
1996	0.004	0.001
1997	0.002	0.000
1998	0.003	0.000
1999	0.002	0.000
2000	0.003	0.000
2001	0.000	0.000
2002	0.003	0.001
2004	0.002	0.001
2005	0.002	0.000
2006	0.003	0.000
2007	0.003	0.001
2008	0.006	0.005

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 0.0069 0.0049 1 2345678 0.0065 0.0007 0.0006 0.0064 0.0058 0.0006 0.0006 0.0056 0.0045 0.0006 0.0043 0.0006 0.0041 0.0005 9 0.0041 0.0005 0.0041 0.0005 10 0.0005 11 0.0035

12 13 14 15 16 17	0.0035 0.0033 0.0032 0.0031 0.0028 0.0028	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
18 19 20 21 22 23	0.0028 0.0026 0.0026 0.0026 0.0026 0.0025	$\begin{array}{c} 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\\ 0.0005\end{array}$
24 25 26 27 28 29	0.0025 0.0025 0.0023 0.0022 0.0022 0.0022	$\begin{array}{c} 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \end{array}$
30 31 32 33 34	0.0022 0.0020 0.0020 0.0020 0.0019 0.0019	$\begin{array}{c} 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004 \end{array}$
35 36 37 38 39 40	0.0019 0.0018 0.0018 0.0017 0.0016 0.0016	$\begin{array}{c} 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\\ 0.0004\end{array}$
41 42 43 44 45 46	0.0015 0.0014 0.0014 0.0013 0.0012 0.0012	0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
47 48 49 50 51 52	0.0010 0.0009 0.0009 0.0008 0.0007 0.0006	$\begin{array}{c} 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ 0.0003\\ \end{array}$
53	0.0004	0.0003

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0011	13790	35	0	Pass
0.0012	11827	35	0	Pass
0.0012	10311	35	0	Pass
0.0013	9032	34	0	Pass
0.0014	7973	34	0	Pass
0.0014	6945	33	0	Pass
0.0015	6114	33	0	Pass
0.0015	5338	33	0	Pass
0.0016	4685	33	0	Pass
0.0017	4133	33	0	Pass
0.0017	3609	33	0	Pass
0.0018	3184	33	1	Pass
0.0018	2786	33	1	Pass
0.0019	2416	33	1	Pass
0.0020	2113	33	1	Pass
0.0020	1873	32	1	Pass
0.0021	1680	32	1	Pass
0.0021	1504	32	2	Pass
0.0022	1368	32	2	Pass
0.0023	1186	32	2	Pass
0.0023	1062	31	2	Pass
0.0024	937	31	3	Pass
0.0024	844	30	3	Pass
0.0025	702	30	3	Pass
0.0026	000	30	4	Pass
0.0020	03Z 570	30	4 5	Pass
0.0027	570	30	5	Pass
0.0027	<i>44</i> 0	29	5	Pass Dass
0.0020	443	29	7	Pass
0.0020	355	28	7	Pass
0.0020	321	20	8	Pass
0.0030	292	27	g	Pass
0.0031	260	27	10	Pass
0.0031	241	25	10	Pass
0.0032	216	25	11	Pass
0.0033	196	25	12	Pass
0.0033	178	23	12	Pass
0.0034	168	23	13	Pass
0.0034	161	23	14	Pass
0.0035	154	21	13	Pass
0.0036	146	21	14	Pass
0.0036	140	21	15	Pass
0.0037	135	20	14	Pass
0.0037	129	19	14	Pass
0.0038	122	19	15	Pass
0.0039	117	18	15	Pass
0.0039	109	17	15	Pass
0.0040	102	17	16	Pass
0.0040	96	15	15	Pass
0.0041	88	15	17	Pass
0.0042	81	15	18	Pass
0.0042	76	13	17	Pass

0.0043	68 61	13	19	Pass
0.0043	56	13	∠⊺ 19	Pass
0.0045	54	11	20	Pass
0.0045	50	9	18	Pass
0.0046	45	8	17	Pass
0.0046	41	8	19	Pass
0.0047	39	6	15	Pass
0.0048	36	3	8	Pass
0.0048	31	1	3	Pass
0.0049	20	0	0	Pass
0.0049	17	0	0	Pass
0.0051	12	Õ	õ	Pass
0.0051	7	Ō	Ō	Pass
0.0052	6	0	0	Pass
0.0052	5	0	0	Pass
0.0053	5	0	0	Pass
0.0054	5	0	0	Pass
0.0054	5	0	0	Pass
0.0055	5	0	0	Pass
0.0056	5	0	Ő	Pass
0.0056	4	Õ	Õ	Pass
0.0057	4	0	Ō	Pass
0.0058	4	0	0	Pass
0.0058	3	0	0	Pass
0.0059	3	0	0	Pass
0.0059	3	0	0	Pass
0.0060	ວ ເ	0	0	Pass Dass
0.0061	3	0	0	Pass
0.0062	3	Õ	õ	Pass
0.0062	3	Ō	Ō	Pass
0.0063	3	0	0	Pass
0.0064	3	0	0	Pass
0.0064	2	0	0	Pass
0.0065	1	0	0	Pass
0.0065	1	0	0	Pass
0.0000	1	0	0	Pass
0.0067	1	Ő	Õ	Pass
0.0068	1	Õ	Õ	Pass
0.0068	1	0	0	Pass
0.0069	0	0	0	Pass
0.0070	0	0	0	Pass
0.0070	0	0	0	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.007 acre-feet On-line facility target flow: 0.0086 cfs. Adjusted for 15 min: 0.0049 cfs. Off-line facility target flow: 0.0049 cfs. Adjusted for 15 min: 0.0049 cfs.

Appendix Predeveloped Schematic

	Basin 0.05ac	B-1B			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-1C
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/22/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.182
Pervious Total	0.182
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.182
Element Flows To [.]	

Element Flows To: Surface In

Interflow

Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.04
Pervious Total	0.04
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.079 0.041 0.022
Impervious Total	0.142
Basin Total	0.182
Element Flows To:	

Element Flows To:		
Surface	Interflow	Groundwater
Tank 1	Tank 1	

Routing Elements Predeveloped Routing

Mitigated Routing	_	— facility dept	h	
Tank 1				
Dimensions				
Depth:	4 ft.			
Tank Type:	Circular			
Diameter:	4 ft.			
Length:	128 ft.			
Infiltration On				
Infiltration rate:	1			
Infiltration safety factor:	1			
Total Volume Infiltrated (ad	c-ft.):	17.969		
Total Volume Through Rise	er (ac-ft.):	6.016		
Total Volume Through Fac	ility (ac-ft.):	23.984		
Percent Infiltrated:		74.92		
Total Precip Applied to Fac	cility:	0		
Total Evap From Facility:		0		orifico dimonsions
Discharge Structure				
Riser Height:	3.9 ft.			
Riser Diameter:	24 in.		K	
Orifice 1 Diameter:	0.375 in. Elevatio	n:0 ft.		
Orifice 2 Diameter:	0.5 in. Elevatio	n:2.668 ft.		
Orifice 3 Diameter:	0.3125 in Elevatio	n:2.974166666	666667 ft.	
Element Flows To:				
Outlet 1 Out	let 2			

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.002	0.000	0.000	0.002
0.0889	0.003	0.000	0.001	0.003
0.1333	0.004	0.000	0.001	0.004
0.1778	0.004	0.000	0.001	0.004
0.2222	0.005	0.000	0.001	0.005
0.2667	0.005	0.001	0.002	0.005
0.3111	0.006	0.001	0.002	0.006
0.3556	0.006	0.001	0.002	0.006
0.4000	0.007	0.001	0.002	0.007
0.4444	0.007	0.002	0.002	0.007
0.4889	0.007	0.002	0.002	0.007
0.5333	0.008	0.002	0.002	0.008
0.5778	0.008	0.003	0.002	0.008
0.6222	0.008	0.003	0.003	0.008
0.6667	0.008	0.004	0.003	0.008
0.7111	0.009	0.004	0.003	0.009
0.7556	0.009	0.004	0.003	0.009
0.8000	0.009	0.005	0.003	0.009
0.8444	0.009	0.005	0.003	0.009
0.8889	0.009	0.006	0.003	0.009
0.9333	0.009	0.006	0.003	0.010
0.9778	0.010	0.007	0.003	0.010
1.0222	0.010	0.007	0.003	0.010
1.0667	0.010	0.007	0.003	0.010
1.1111	0.010	0.008	0.004	0.010
1.1556	0.010	0.008	0.004	0.010

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889	0.010 0.011	0.009 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.015 0.015 0.016 0.016 0.017 0.017 0.018 0.019 0.019 0.019	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0	0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
2.0009 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.011 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	0.019 0.020 0.021 0.021 0.022 0.022 0.023 0.023 0.024 0.024 0.025 0.025 0.025 0.026 0.026 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029 0.029 0.029 0.029	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.009 0.009 0.009 0.009 0.0010 0.011 0.011	0.011 0.011
3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.005	0.030 0.031 0.031 0.032 0.032 0.033 0.033 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035 0.035	0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

3.7778	0.005	0.036	0.016	0.011	
3.8222	0.004	0.036	0.017	0.011	
3.8667	0.004	0.036	0.017	0.011	
3.9111	0.003	0.036	0.042	0.011	
3.9556	0.002	0.036	0.295	0.011	
4.0000	0.000	0.036	0.688	0.011	
4.0444	0.000	0.000	1.180	0.011	
			facilit	v volume = 156	8cf
				· · · · · · · · · · · · · · · · · · ·	

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.182
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.04 Total Impervious Area: 0.142

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0075595 year0.01243810 year0.01586525 year0.02030950 year0.023661

0.027025

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.00412
0.005391
0.006352
0.007709
0.008828
0.010044

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

Ical	i leuevelopeu	miliyau
1956	0.008	0.004
1957	0.014	0.005
1958	0.005	0.003
1959	0.006	0.004
1960	0.011	0.005
1961	0.007	0.004
1962	0.002	0.003
1963	0.014	0.005
1964	0.008	0.004
1965	0.009	0.004

1966	0.005	0.003
1968	0.005	0.004
1969	0.003	0.003
1970	0.006	0.004
1971	0.007	0.004
1972	0.015	0.005
1973	0.000	0.004
1975	0.022	0.004
1976	0.011	0.004
1977	0.002	0.003
1978	0.008	0.004
1979	0.014	0.004
1900	0.006	0.004
1982	0.005	0.004
1983	0.011	0.005
1984	0.009	0.004
1985	0.003	0.004
1986	0.012	0.005
1987	0.022	0.005
1900	0.004	0.004
1990	0.019	0.004
1991	0.023	0.010
1992	0.004	0.004
1993	0.003	0.003
1994	0.003	0.003
1995	0.007	0.005
1997	0.012	0.003
1998	0.009	0.004
1999	0.008	0.004
2000	0.010	0.005
2001	0.001	0.003
2002	0.009	0.006
2003	0.004	0.003
2005	0.006	0.004
2006	0.009	0.005
2007	0.009	0.006
2008	0.020	0.017

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.02320.0173 2345678 0.0218 0.0103 0.0057 0.0216 0.0196 0.0057 0.0188 0.0057 0.0153 0.0054 0.0054 0.0147 0.0138 0.0052 9 0.0137 0.0051 0.0137 0.0051 10 0.0050 11 0.0118

12	0.0118	0.0050
13	0.0112	0.0049
14	0.0106	0.0049
15	0.0106	0.0048
16	0.0096	0.0046
17	0.0094	0.0045
18	0.0094	0.0045
19	0.0089	0.0045
20	0.0087	0.0044
21	0.0087	0.0044
22	0.0086	0.0043
23	0.0083	0.0043
24	0.0083	0.0043
25 26 27	0.0083 0.0079 0.0075	0.0042 0.0042 0.0041 0.0041
20	0.0075	0.0040
29	0.0074	0.0040
30	0.0069	0.0040
31	0.0067	0.0039
32	0.0066	0.0039
33	0.0063	0.0039
34	0.0063	0.0038
35	0.0063	0.0038
36	0.0062	0.0038
37	0.0061	0.0038
38	0.0059	0.0037
39	0.0054	0.0037
40 41 42 43	0.0052 0.0052 0.0046	0.0037 0.0036 0.0036 0.0035
44 45 46	0.0040 0.0044 0.0041 0.0040	0.0034 0.0033 0.0032
47	0.0033	0.0032
48	0.0029	0.0032
49	0.0029	0.0032
50	0.0027	0.0031
51	0.0023	0.0030
52	0.0019	0.0030
53	0.0015	0.0029

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0038	13781	2782	20	Pass
0.0040	11833	2089	17	Pass
0.0042	10296	1589	15	Pass
0.0044	9038	1190	13	Pass
0.0046	7965	904	11	Pass
0.0048	6941	720	10	Pass
0.0050	6105	554	9	Pass
0.0052	5334	402	7	Pass
0.0054	4685	321	6	Pass
0.0056	4131	252	6	Pass
0.0058	3609	133	3	Pass
0.0060	3174	112	3	Pass
0.0062	2782	95	3	Pass
0.0064	2418	91	3	Pass
0.0066	2109	88	4	Pass
0.0068	1875	87	4	Pass
0.0070	1679	84	5	Pass
0.0072	1504	83	5	Pass
0.0074	1367	83	6	Pass
0.0076	1183	81	6	Pass
0.0078	1062	80	7	Pass
0.0080	936	79	8	Pass
0.0082	844	77	9	Pass
0.0084	761	75	9	Pass
0.0086	688	73	10	Pass
0.0088	632	71	11	Pass
0.0090	570	68	11	Pass
0.0092	507	65	12	Pass
0.0094	449	64	14	Pass
0.0096	402	61	15	Pass
0.0098	355	57	16	Pass
0.0100	321	54	16	Pass
0.0102	292	49	16	Pass
0.0104	261	46	1/	Pass
0.0106	242	45	18	Pass
0.0108	217	44	20	Pass
0.0110	196	44	22	Pass
0.0112	178	43	24	Pass
0.0114	168	43	25	Pass
0.0116	101	42	20	Pass
0.0118	154	42	21	Pass
0.0120	146	40	27	Pass
0.0122	140	40	28	Pass
0.0124	130	39	28	Pass
0.0120	129	39	30	Pass
0.0128	122	3/	30	Pass
0.0130	117	<i>১।</i> ১০	১। ১১	rass Door
0.0132	109	30 24	აა იი	Pass
0.0134	102	04 24	33 25	r ass Dooo
0.0130	90 00	ა 4 აე	30 26	rass Doco
0.0130	00 01	S∠ 21	30 20	Pass
0.0140	01 70	31	30 40	Pass
0.0142	16	31	40	rass

0.0144	68	29	42	Pass
0.0146	61	27	44	Pass
0.0148	56	25	44	Pass
0.0150	54	23	42	Pass
0.0152	50	23	46	Pass
0.0154	45	21	46	Pass
0.0156	41	19	46	Pass
0.0158	39	17	43	Pass
0.0160	36	16	44	Pass
0.0162	31	14	45 50	Pass
0.0104	20	13	50 50	Pass Dace
0.0100	18	0	50	Pass Dass
0.0100	10	6	50	Pass
0.0170	7	2	28	Pass
0.0174	6	Ō	0	Pass
0.0176	5	Õ	Ő	Pass
0.0178	5	õ	Õ	Pass
0.0180	5	õ	õ	Pass
0.0182	5	Õ	Õ	Pass
0.0184	5	Ō	Ō	Pass
0.0186	5	0	0	Pass
0.0188	5	0	0	Pass
0.0190	4	0	0	Pass
0.0192	4	0	0	Pass
0.0194	4	0	0	Pass
0.0196	3	0	0	Pass
0.0198	3	0	0	Pass
0.0200	3	0	0	Pass
0.0202	3	0	0	Pass
0.0204	3	0	0	Pass
0.0206	3	0	0	Pass
0.0208	3	0	0	Pass
0.0211	3	0	0	Pass
0.0215	3	0	0	Pass
0.0213	2	0	0	Pass
0.0219	1	0	Ő	Pass
0.0210	1	Õ	Ő	Pass
0.0223	1	õ	õ	Pass
0.0225	1	Õ	Õ	Pass
0.0227	1	Ō	Ō	Pass
0.0229	1	0	0	Pass
0.0231	1	0	0	Pass
0.0233	0	0	0	Pass
0.0235	0	0	0	Pass
0.0237	0	0	0	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.0198 acre-feet On-line facility target flow: 0.0221 cfs. Adjusted for 15 min: 0.0221 cfs. Off-line facility target flow: 0.0124 cfs. Adjusted for 15 min: 0.0124 cfs. WQ flow rate = 5.5gpm
Appendix Predeveloped Schematic

	帰	Basin 0.18ac	1			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-1D
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/22/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.265
Pervious Total	0.265
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.265
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.056
Pervious Total	0.056
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.106 0.083 0.019
Impervious Total	0.208
Basin Total	0.264
Flowert Flower Ter	

Interflow
Tank 1

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing		- facility	/ denth	
Tank 1		lucinty	deptil	
Dimensions	K			
Depth:	4 ft.			
Tank Type:	Circular			
Diameter:	4 ft.			
Length:	200 ft.			
Infiltration On				
Infiltration rate:	1			
Infiltration safety factor:	1			
Total Volume Infiltrated (a	c-ft.):	25.31		
Total Volume Through Ris	er (ac-ft.):	9.593		
Total Volume Through Fac	cility (ac-ft.):	34.903		
Percent Infiltrated:		72.52		
Total Precip Applied to Fa	cility:	0		- onnce almensions
Total Evap From Facility:		0		
Discharge Structure	0.04			
Riser Height:	3.9 ft.			
Riser Diameter:	<u>24 in.</u>	<u> </u>		
Orifice 1 Diameter:	0.5 in. Elevation	on:0 ft.		
Orifice 2 Diameter:	0.625 in. Elevation	on:2.167 ft.		
Orifice 3 Diameter:	0.375 in. Elevation	on:2.96666666	66666 ft.	
Element Flows To:				
Outlet 1 Out	let 2			

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.003	0.000	0.001	0.003
0.0889	0.005	0.000	0.002	0.005
0.1333	0.006	0.000	0.002	0.006
0.1778	0.007	0.000	0.002	0.007
0.2222	0.008	0.001	0.003	0.008
0.2667	0.009	0.001	0.003	0.009
0.3111	0.009	0.002	0.003	0.009
0.3556	0.010	0.002	0.004	0.010
0.4000	0.011	0.003	0.004	0.011
0.4444	0.011	0.003	0.004	0.011
0.4889	0.012	0.004	0.004	0.012
0.5333	0.012	0.004	0.005	0.012
0.5778	0.012	0.005	0.005	0.013
0.6222	0.013	0.005	0.005	0.013
0.6667	0.013	0.006	0.005	0.013
0.7111	0.014	0.006	0.005	0.014
0.7556	0.014	0.007	0.005	0.014
0.8000	0.014	0.008	0.006	0.014
0.8444	0.015	0.008	0.006	0.015
0.8889	0.015	0.009	0.006	0.015
0.9333	0.015	0.010	0.006	0.015
0.9778	0.015	0.010	0.006	0.015
1.0222	0.016	0.011	0.006	0.016
1.0667	0.016	0.012	0.007	0.016
1.1111	0.016	0.013	0.007	0.016
1.1556	0.016	0.013	0.007	0.016

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1 6444	0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018	0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.020 0.021 0.022	$\begin{array}{c} 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.008\\ 0.$	0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018
1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.023 0.024 0.024 0.025 0.026 0.027 0.028 0.028 0.028 0.029 0.030 0.031 0.031	0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667	0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017	0.032 0.033 0.034 0.035 0.036 0.036 0.037 0.038 0.039 0.040 0.040	0.011 0.012 0.013 0.014 0.015 0.015 0.016 0.016 0.017 0.017 0.017 0.018 0.018	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556	0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.015	0.041 0.042 0.043 0.043 0.044 0.045 0.046 0.046 0.046 0.047 0.048 0.048	0.019 0.019 0.020 0.020 0.020 0.020 0.021 0.022 0.023 0.023 0.023	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.014 0.014 0.013 0.013 0.012 0.012 0.012 0.012 0.011 0.011 0.010 0.009 0.009	0.049 0.050 0.051 0.052 0.052 0.053 0.053 0.054 0.054 0.055 0.055 0.056	0.024 0.025 0.025 0.026 0.027 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018

3.7778	0.008	0.056	0.030	0.018
3.8222	0.007	0.056	0.030	0.018
3.8667	0.006	0.057	0.030	0.018
3.9111	0.005	0.057	0.056	0.018
3.9556	0.003	0.057	0.309	0.018
4.0000	0.000	0.057	0.702	0.018
4.0444	0.000	0.000 🔨	1.194	0.018
		\sim		

----- facility volume = 2483cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.265
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.056 Total Impervious Area: 0.208

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0110065 year0.01811110 year0.023125 year0.0295750 year0.034451100 year0.03935

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.006929
5 year	0.008932
10 year	0.010429
25 year	0.012521
50 year	0.014232
100 year	0.016078

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

i cai	i leuevelopeu	imilyau
1956	0.011	0.007
1957	0.020	0.009
1958	0.007	0.005
1959	0.009	0.006
1960	0.016	0.008
1961	0.010	0.006
1962	0.003	0.005
1963	0.020	0.009
1964	0.012	0.006
1965	0.013	0.007

1966 1967	0.007 0.010	0.006 0.007
1968 1969	0.008 0.005	0.006 0.005
1970	0.009	0.006
1971	0.011	0.007
1972	0.022	0.008
1973	0.009	0.007
1975	0.032	0.006
1976	0.015	0.007
1977	0.003	0.006
1978	0.012	0.007
1979	0.020	0.007
1981	0.021	0.007
1982	0.008	0.007
1983	0.016	0.009
1984	0.013	0.007
1965	0.004	0.000
1987	0.031	0.008
1988	0.006	0.006
1989	0.009	0.006
1990	0.027	0.010
1991	0.034	0.017
1993	0.004	0.005
1994	0.004	0.005
1995	0.011	0.008
1996	0.017	0.008
1997	0.010	0.008
1999	0.012	0.008
2000	0.014	0.008
2001	0.002	0.005
2002	0.013	0.010
2003	0.000	0.005
2005	0.009	0.006
2006	0.013	0.008
2007	0.014	0.009
2008	0.029	0.025

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.03380.0248 0.0317 2345678 0.0171 0.0314 0.0097 0.0285 0.0096 0.0274 0.0095 0.0223 0.0092 0.0213 0.0091 0.0201 0.0087 9 0.0200 0.0085 0.0200 0.0085 10 0.0084 11 0.0172

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	0.0172 0.0163 0.0155 0.0154 0.0139 0.0137 0.0129 0.0127 0.0126 0.0126 0.0126 0.0120 0.0120 0.0120 0.0114 0.0110	0.0083 0.0083 0.0083 0.0081 0.0077 0.0076 0.0075 0.0074 0.0074 0.0074 0.0073 0.0072 0.0072 0.0072 0.0071 0.0070 0.0069
28 29 30 31 32 33	0.0109 0.0107 0.0100 0.0097 0.0096 0.0092	$\begin{array}{c} 0.0068\\ 0.0068\\ 0.0067\\ 0.0067\\ 0.0065\\ 0.0065\end{array}$
34 35 36 37 38 39	0.0092 0.0092 0.0090 0.0089 0.0085 0.0079	$\begin{array}{c} 0.0065\\ 0.0065\\ 0.0064\\ 0.0064\\ 0.0063\\ 0.0062\\ \end{array}$
40 41 42 43 44 45 46	0.0076 0.0076 0.0067 0.0067 0.0065 0.0060	$\begin{array}{c} 0.0062\\ 0.0060\\ 0.0060\\ 0.0059\\ 0.0058\\ 0.0056\\ 0.0056\end{array}$
40 47 48 49 50 51 52	0.0038 0.0048 0.0042 0.0042 0.0039 0.0034 0.0028	$\begin{array}{c} 0.0035\\ 0.0055\\ 0.0054\\ 0.0054\\ 0.0053\\ 0.0050\\ 0.0050\\ 0.0050\end{array}$
53	0.0021	0.0049

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0055	13773	5579	40	Pass
0.0058	11833	4338	36	Pass
0.0061	10298	3306	32	Pass
0.0064	9030	2488	27	Pass
0.0067	7962	1937	24	Pass
0.0070	6938	1499	21	Pass
0.0073	6105	1170	19	Pass
0.0075	5336	902	16	Pass
0.0078	4685	721	15	Pass
0.0081	4131	597	14	Pass
0.0084	3609	460	12	Pass
0.0087	3172	350	11	Pass
0.0090	2782	293	10	Pass
0.0093	2418	214	8	Pass
0.0096	2111	126	5	Pass
0.0099	1873	105	5	Pass
0.0102	1679	103	6	Pass
0.0105	1505	100	6	Pass
0.0108	1368	99	7	Pass
0.0111	1188	98	8	Pass
0.0114	1062	97	9	Pass
0.0116	937	97	10	Pass
0.0119	845	96	11	Pass
0.0122	763	94	12	Pass
0.0125	688	92	13	Pass
0.0128	632	91	14	Pass
0.0131	570	91	15	Pass
0.0134	510	89	17	Pass
0.0137	449	87	19	Pass
0.0140	402	86	21	Pass
0.0143	355	84	23	Pass
0.0146	321	81	25	Pass
0.0149	294	74	25	Pass
0.0152	260	72	27	Pass
0.0154	241	69	28	Pass
0.0157	217	68	31	Pass
0.0160	190	64 61	32	Pass
0.0103	1/0	0 I 5 7	04 22	Pass
0.0160	100	57 57	<u>აა</u> 22	Pass
0.0109	101	04 17	33 20	Pass
0.0172	100	47	30	Pass
0.0175	140	40	30	Pass
0.0170	140	44	21	Pass
0.0101	100	4Z 11	21	Pass
0.0104	129	41	30	Pass Dass
0.0107	122	40	32	Pass Dass
0.0190	100	38	34	Pass
0.0192	103	36	35	1 000 Dase
0.0190	96	35	36	1 000 Daee
0.0190	88	33	37	1 000 Daee
0.0201	81	30	37	1 000 Dase
0.0204	76	28	36	1 000 Dass
0.0201	10	20	00	1 433

68	26	38	Pass
61	24	39	Pass
56	24	42	Pass
54	22	40	Pass
50	22	44	Pass
40	20	44	Pass
41	10	43	Pass
39	16	43	Pass
30	10	44	Pass Dass
26	14	40	Pass
20	9	40	Pass
18	6	40	Pass
12	0	0	Pass
7	0	0	Pass
6	Õ	Õ	Pass
5	õ	õ	Pass
5	õ	õ	Pass
5	Õ	Õ	Pass
5	Õ	Õ	Pass
5	Ō	Ō	Pass
5	0	0	Pass
5	0	0	Pass
4	0	0	Pass
4	0	0	Pass
4	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
3	0	0	Pass
2	0	0	Pass
1	0	0	Pass
1	0	0	Pass Dass
1	0	0	Pass
1	0	0	Pass
1	0	0	Pass
1	õ	õ	Pass
Ö	õ	õ	Pass
ŏ	ŏ	ŏ	Pass
õ	õ	õ	Pass
	68 61 54 54 4 3 36 16 22 82 11 7 6 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Water Quality

Water Quality BMP Flow and Volume for POC #1On-line facility volume:0.0288 acre-feetOn-line facility target flow:0.032 cfs.Adjusted for 15 min:0.032 cfs.Off-line facility target flow:0.0181 cfs.Adjusted for 15 min:0.0181 cfs.

- WQ flow rate = 8.2gpm

Appendix Predeveloped Schematic

	R	Basin 0.27ac	1			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-2A
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 2A

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.537
Pervious Total	0.537
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.537
Element Flows To:	

Element Flows To: Surface In

Interflow

Groundwater

Mitigated Land Use

Basin 2A Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.212
Pervious Total	0.212
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.14 0.161 0.024
Impervious Total	0.325
Basin Total	0.537
Element Flows To:	Interflow

Surface Tank 1 Interflow Tank 1 Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing		fooility	donth	
Tank 1			depth	
Dimensions				
Depth:	4 ft.			
Tank Type:	Circular			
Diameter:	4 ft.			
Length:	310 ft.			
Infiltration On				
Infiltration rate:	1			
Infiltration safety factor:	1			
Total Volume Infiltrated (ad	c-ft.):	43.661		
Total Volume Through Ris	er (ac-ft.):	20.192		
Total Volume Through Fac	cility (ac-ft.):	63.853		
Percent Infiltrated:		68.38		
Total Precip Applied to Fa	cility:	0		
Total Evap From Facility:		0		arifica dimonsiona
Discharge Structure	o o <i>(</i> /			- onlice dimensions
Riser Height:	3.9 ft.			
Riser Diameter:	<u>24 in.</u>	0.4	K	
Orifice 1 Diameter:	0.6875 In Elevation	n:0 ft.		
Orifice 2 Diameter:	0.84 In. Elevation	n:2.668 ft.		
Unifice 3 Diameter:	0.5625 INEIEVatio	n:3.53791666	000009 II.	
Cutlet 1	lot 0			
Outlet I Out	iel Z			

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.002	0.006
0.0889	0.008	0.000	0.003	0.008
0.1333	0.010	0.000	0.004	0.010
0.1778	0.011	0.001	0.005	0.011
0.2222	0.013	0.002	0.006	0.013
0.2667	0.014	0.002	0.006	0.014
0.3111	0.015	0.003	0.007	0.015
0.3556	0.016	0.003	0.007	0.016
0.4000	0.017	0.004	0.008	0.017
0.4444	0.017	0.005	0.008	0.018
0.4889	0.018	0.006	0.009	0.018
0.5333	0.019	0.007	0.009	0.019
0.5778	0.020	0.008	0.009	0.020
0.6222	0.020	0.008	0.010	0.020
0.6667	0.021	0.009	0.010	0.021
0.7111	0.021	0.010	0.010	0.021
0.7556	0.022	0.011	0.011	0.022
0.8000	0.022	0.012	0.011	0.023
0.8444	0.023	0.013	0.011	0.023
0.8889	0.023	0.014	0.012	0.023
0.9333	0.024	0.015	0.012	0.024
0.9778	0.024	0.016	0.012	0.024
1.0222	0.024	0.018	0.013	0.025
1.0667	0.025	0.019	0.013	0.025
1.1111	0.025	0.020	0.013	0.025
1.1556	0.025	0.021	0.013	0.026

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000	0.026 0.026 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.027 0.026 0	0.022 0.023 0.024 0.026 0.027 0.028 0.029 0.030 0.032 0.033 0.034 0.035 0.037 0.038 0.039 0.040 0.042 0.043 0.044 0.046 0.047 0.048 0.047 0.048 0.049 0.049 0.051 0.052 0.053 0.054 0.052 0.053 0.054 0.059 0.060 0.062 0.063 0.064 0.065 0.065	0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.025 0.027 0.028	0.026 0.026 0.027 0.027 0.027 0.027 0.027 0.028 0
2.0007 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 2.7007 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6889 3.778 3.6000 3.6444 3.6889	0.026 0.026 0.026 0.025 0.025 0.025 0.024 0.024 0.024 0.023 0.023 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.020 0.020 0.019 0.017 0.017 0.016 0.015	0.003 0.064 0.065 0.066 0.069 0.070 0.071 0.072 0.073 0.074 0.075 0.076 0.076 0.077 0.078 0.079 0.080 0.081 0.081 0.082 0.083 0.084 0.084 0.085 0.086	0.025 0.027 0.028 0.029 0.030 0.031 0.032 0.033 0.034 0.035 0.036 0.036 0.036 0.037 0.038 0.039 0.039 0.039 0.039 0.039 0.040 0.041 0.041 0.041 0.043 0.045 0.046 0.047	0.028 0.

3.7778	0.013	0.087	0.049	0.028	
3.8222	0.011	0.088	0.050	0.028	
3.8667	0.010	0.088	0.051	0.028	
3.9111	0.008	0.088	0.076	0.028	
3.9556	0.006	0.089	0.330	0.028	
4.0000	0.000	0.089	0.723	0.028	
4.0444	0.000	0.000	1.216	0.028	
		\sim			
			<		
			\mathbf{X}		
			Sector Se	cility volume = 3	876cf

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.537
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.212 Total Impervious Area: 0.325

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0223045 year0.036710 year0.0468125 year0.05992250 year0.069812100 year0.079739

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.013451
5 year	0.01771
10 year	0.020947
25 year	0.025537
50 year	0.029337
100 year	0.033482

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Fredeveloped	wiitigate
1956	0.022	0.013
1957	0.041	0.018
1958	0.014	0.010
1959	0.018	0.013
1960	0.031	0.016
1961	0.019	0.012
1962	0.007	0.010
1963	0.041	0.018
1964	0.024	0.012
1965	0.025	0.013

1966	0.014	0.011
1967	0.020	0.014
1968 1969 1970	0.015 0.010 0.017	0.013
1971 1972	0.022	0.012
1973	0.019	0.013
1974	0.015	0.011
1975	0.064	0.011
1976	0.031	0.014
1977	0.006	0.011
1978	0.025	0.014
1979	0.041	0.014
1980	0.019	0.013
1981	0.043	0.015
1982	0.016	0.014
1983 1984	0.033	0.017 0.014
1985 1986 1987	0.009	0.012
1988 1989	0.013	0.013
1990	0.056	0.019
1991	0.068	0.032
1992	0.012	0.012
1993	0.009	0.009
1994	0.008	0.010
1995	0.022	0.016
1996	0.035	0.017
1997	0.020	0.013
1998 1999 2000	0.028	0.014
2000	0.028	0.010
2003 2004	0.012	0.010 0.017
2005	0.019	0.012
2006	0.026	0.015
2007	0.028	0.019
2008	0.058	0.060

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.06850.0595 2345678 0.0642 0.0315 0.0191 0.0636 0.0578 0.0188 0.0556 0.0186 0.0451 0.0179 0.0433 0.0179 0.0407 0.0173 9 0.0406 0.0168 0.0405 0.0167 10 11 0.0349 0.0166

12 13 14 15	0.0348 0.0330 0.0314 0.0312	0.0164 0.0162 0.0158 0.0158
10 17 18	0.0282	0.0153
19	0.0262	0.0147
21	0.0256	0.0144
23	0.0246	0.0141
25 26	0.0244	0.0138
27	0.0232	0.0135
20 29 20	0.0220	0.0133
31 32	0.0202	0.0131
33 34	0.0187	0.0126
35 36	0.0186	0.0125
37 38	0.0180	0.0122
39 40	0.0160	0.0121
41 42	0.0154 0.0136	0.0117 0.0115
43 44	0.0135 0.0131	0.0112
45 46	0.0121 0.0118	0.0107 0.0105
47 48	0.0098 0.0086	0.0104 0.0103
49 50	0.0085 0.0079	0.0102 0.0100
51 52	0.0069 0.0056	0.0095 0.0094
53	0.0043	0.0092

Duration Flows The Facility PASSED

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0112	13781	4875	35	Pass
0.0123 10313 2882 27 Pass 0.0129 9054 2236 24 Pass 0.0135 7964 1777 22 Pass 0.0141 6949 1407 20 Pass 0.0147 6112 1097 17 Pass 0.0153 5343 885 16 Pass 0.0154 4131 575 13 Pass 0.0177 3184 360 11 Pass 0.0171 3613 442 12 Pass 0.0177 3184 366 11 Pass 0.0183 2782 286 10 Pass 0.0184 2418 164 6 Pass 0.0200 1879 119 6 Pass 0.0212 1504 89 5 Pass 0.0224 1187 86 7 Pass 0.0224 1062 86 8 Pass 0.0242 844 83 9 Pass 0.0244	0.0117	11838	3749	31	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0123	10313	2882	27	Pass
0.0135 7964 1777 22 Pass 0.0141 6949 1407 20 Pass 0.0147 6112 1097 17 Pass 0.0153 5343 885 16 Pass 0.0153 5343 885 16 Pass 0.0165 4131 575 13 Pass 0.0177 3184 360 11 Pass 0.0173 2782 286 10 Pass 0.0183 2782 286 10 Pass 0.0184 2113 135 6 Pass 0.0200 1879 119 6 Pass 0.0218 1368 87 6 Pass 0.0224 1187 86 7 Pass 0.0236 937 85 9 Pass 0.0248 761 82 10 Pass 0.0266 570 78 13 Pass <t< td=""><td>0.0129</td><td>9054</td><td>2236</td><td>24</td><td>Pass</td></t<>	0.0129	9054	2236	24	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0135	7964	1777	22	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0141	6949	1407	20	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0147	6112	1097	17	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0153	5343	885	16	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0159	4685	703	15	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0165	4131	575	13	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0171	3613	442	12	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0177	3184	360	11	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0183	2782	286	10	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0189	2418	164	6	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0194	2113	135	6	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0200	1879	119	6	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0206	1679	102	6	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0212	1504	89	5	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0218	1308	87	0	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0224	1062	00	1	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0230	1002	00 95	0	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0230	937	83	9	Pass Dass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0242	761	82	9 10	Pass Dass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0240	688	80	11	Pass
0.0266 570 78 13 $Pass$ 0.0272 506 76 15 $Pass$ 0.0277 449 74 16 $Pass$ 0.0283 402 71 17 $Pass$ 0.0289 355 68 19 $Pass$ 0.0295 321 66 20 $Pass$ 0.0301 292 63 21 $Pass$ 0.0307 260 59 22 $Pass$ 0.0313 241 55 22 $Pass$ 0.0313 241 55 22 $Pass$ 0.0319 216 50 23 $Pass$ 0.0325 196 48 24 $Pass$ 0.0331 178 46 25 $Pass$ 0.0331 178 46 25 $Pass$ 0.0343 161 44 27 $Pass$ 0.0344 154 43 27 $Pass$ 0.0354 146 42 28 $Pass$ 0.0372 129 38 29 $Pass$ 0.0374 122 36 29 $Pass$ 0.0374 117 35 29 $Pass$ 0.0384 117 35 29 $Pass$ 0.0390 109 33 30 $Pass$ 0.0402 96 29 30 $Pass$ 0.0414 81 25 30 $Pass$	0.0260	632	80	12	Pass
0.0272 506 76 15 Pass 0.0277 449 74 16 Pass 0.0283 402 71 17 Pass 0.0289 355 68 19 Pass 0.0295 321 66 20 Pass 0.0301 292 63 21 Pass 0.0307 260 59 22 Pass 0.0313 241 55 22 Pass 0.0313 241 55 22 Pass 0.0319 216 50 23 Pass 0.0325 196 48 24 Pass 0.0331 178 46 25 Pass 0.0337 168 45 26 Pass 0.0343 161 44 27 Pass 0.0354 146 42 28 Pass 0.0366 135 39 28 Pass 0.0372 129 38 29 Pass 0.0378 122 36	0.0266	570	78	13	Pass
0.0277 449 74 16 Pass 0.0283 402 71 17 Pass 0.0289 355 68 19 Pass 0.0295 321 66 20 Pass 0.0301 292 63 21 Pass 0.0307 260 59 22 Pass 0.0313 241 55 22 Pass 0.0319 216 50 23 Pass 0.0325 196 48 24 Pass 0.0331 178 46 25 Pass 0.0337 168 45 26 Pass 0.0343 161 44 27 Pass 0.0343 161 44 27 Pass 0.0354 146 42 28 Pass 0.0360 140 41 29 Pass 0.0372 129 38 29 Pass 0.0378 122 36 29 Pass 0.0390 109 33	0.0272	506	76	15	Pass
0.0283 402 71 17 Pass 0.0289 355 68 19 Pass 0.0295 321 66 20 Pass 0.0301 292 63 21 Pass 0.0307 260 59 22 Pass 0.0313 241 55 22 Pass 0.0319 216 50 23 Pass 0.0325 196 48 24 Pass 0.0331 178 46 25 Pass 0.0337 168 45 26 Pass 0.0343 161 44 27 Pass 0.0354 146 42 28 Pass 0.0360 140 41 29 Pass 0.0372 129 38 29 Pass 0.0378 122 36 29 Pass 0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29<	0.0277	449	74	16	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0283	402	71	17	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0289	355	68	19	Pass
0.03012926321Pass0.03072605922Pass0.03132415522Pass0.03192165023Pass0.03251964824Pass0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03431614427Pass0.03541464228Pass0.03601404129Pass0.03721293829Pass0.03781223629Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0295	321	66	20	Pass
0.03072605922Pass0.03132415522Pass0.03192165023Pass0.03251964824Pass0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03431614427Pass0.03441544327Pass0.03541464228Pass0.03601404129Pass0.03721293829Pass0.03781223629Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0301	292	63	21	Pass
0.03132415522Pass0.03192165023Pass0.03251964824Pass0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0307	260	59	22	Pass
0.03192165023Pass0.03251964824Pass0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0414812530Pass	0.0313	241	55	22	Pass
0.03251964824Pass0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0319	216	50	23	Pass
0.03311784625Pass0.03371684526Pass0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0325	196	48	24	Pass
0.03371684526Pass0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0331	178	46	25	Pass
0.03431614427Pass0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0337	168	45	26	Pass
0.03491544327Pass0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0343	161	44	27	Pass
0.03541464228Pass0.03601404129Pass0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0349	154	43	27	Pass
0.0360 140 41 29 Pass 0.0366 135 39 28 Pass 0.0372 129 38 29 Pass 0.0378 122 36 29 Pass 0.0384 117 35 29 Pass 0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0354	146	42	28	Pass
0.03661353928Pass0.03721293829Pass0.03781223629Pass0.03841173529Pass0.03901093330Pass0.03961023231Pass0.0402962930Pass0.0408882730Pass0.0414812530Pass	0.0360	140	41	29	Pass
0.0372 129 38 29 Pass 0.0378 122 36 29 Pass 0.0384 117 35 29 Pass 0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0366	135	39	28	Pass
0.0376 122 36 29 Pass 0.0384 117 35 29 Pass 0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0372	129	38	29	Pass
0.0304 117 33 29 Pass 0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0378	122	30	29	Pass
0.0390 109 33 30 Pass 0.0396 102 32 31 Pass 0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0304	100	22	29	Pass
0.0402 96 29 30 Pass 0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0390	109	30	30	г азэ Daee
0.0408 88 27 30 Pass 0.0414 81 25 30 Pass	0.0000	96	20	30	1 000 Dace
0.0414 81 25 30 Pass	0.0402	88	23	30	Pass
	0.0414	81	25	30	Pass
0.0420 76 23 30 Pass	0.0420	76	23	30	Pass

0.0426	68	22	32	Pass
0.0431	61	21	34	Pass
0.0437	56	20	35	Pass
0.0443	54	20	37	Pass
0.0449	50	18	36	Pass
0.0455	45	18	40	Pass
0.0461	41	16	39	Pass
0.0467	39	16	41	Pass
0.0473	36	14	38	Pass
0.0479	31	14	45	Pass
0.0485	26	12	46	Pass
0.0491	22	10	45	Pass
0.0497	18	9	50	Pass
0.0503	12	7	58	Pass
0.0509	7	4	57	Pass
0.0514	6	3	50	Pass
0.0520	5	3	60	Pass
0.0526	5	3	60	Pass
0.0532	5	3	60	Pass
0.0538	5	2	40	Pass
0.0544	5	2	40	Pass
0.0550	5	2	40	Pass
0.0556	5	2	40	Pass
0.0562	4	2	50	Pass
0.0568	4	1	25	Pass
0.0574	4	1	25	Pass
0.0580	3	1	33	Pass
0.0500	3	1	<u>ు</u>	Pass
0.0591	3		33	Pass Dass
0.0597	3	0	0	Pass
0.0003	3	0	0	Pass Dass
0.0003	3	0	0	Pass
0.0013	3	0	0	Pass
0.0627	3	Ő	Ő	Pass
0.0633	3	Õ	Ő	Pass
0.0639	2	õ	Õ	Pass
0.0645	1	õ	õ	Pass
0.0651	1	Õ	Õ	Pass
0.0657	1	Õ	Õ	Pass
0.0663	1	Õ	Õ	Pass
0.0668	1	Ō	Ō	Pass
0.0674	1	0	0	Pass
0.0680	1	0	0	Pass
0.0686	0	0	0	Pass
0.0692	0	0	0	Pass
0.0698	0	0	0	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.0497 acre-feet On-line facility target flow: 0.0501 cfs. Adjusted for 15 min: 0.0281 cfs. Off-line facility target flow: 0.0281 cfs. Adjusted for 15 min: 0.0281 cfs. WQ flow rate = 12.6gpm

Appendix Predeveloped Schematic

	7	Basin 0.54ac	2A			

Mitigated Schematic

		Basin 0.54ac	2A			
	SI					
		Tank 1				

<section-header>

General Model Information

Project Name:	Basin B-2B
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	Hourly
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Landuse Basin Data Predeveloped Land Use

Basin 2B

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.525
Pervious Total	0.525
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.525
Element Flows To: Surface	Interflow

Mitigated Land Use

Basin 2B

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.123
Pervious Total	0.123
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.197 0.173 0.032
Impervious Total	0.402
Basin Total	0.525

Element Flows To:	
Surface	Interflow
Tank 1	Tank 1

Routing Elements Predeveloped Routing

Mitigated Routing		
Tank 1	facility depth	
Dimensions		
	<u>4 ft.</u>	
Lank Type:	Circular	
Diameter:	4 ft.	
Length:	360 ft.	
Infiltration On		
Infiltration rate:	1	
Infiltration safety factor:	1	
Total Volume Infiltrated (a	c-ft.): 48.562	
Total Volume Through Ri	er (ac-ft.): 19.396	
Total Volume Through Fa	cility (ac-ft.): 67.958	
Percent Infiltrated:	71.46	
Total Precip Applied to Fa	cility. 0	
Total Evan From Facility	0	
Discharge Structure	orifice di	mensions
Riser Height:	3.0.ft	
Riser Diameter	24 in	
Orifico 1 Diamotor:	0.6875 in Eloyation: 0 ft	
Orifice 2 Diameter:	0.0075 Inclevation: 2.299 ft	
Office 2 Diameter	0.75 III. Elevation:2.300 II.	
Onlice 3 Diameter:	0.5 In. Elevation: $3.2629 1666666669 It.$	
Element FIOWS 10:		
Outlet 1 Ou	let 2	

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.002	0.007
0.0889	0.009	0.000	0.003	0.009
0.1333	0.011	0.001	0.004	0.012
0.1778	0.013	0.001	0.005	0.013
0.2222	0.015	0.002	0.006	0.015
0.2667	0.016	0.003	0.006	0.016
0.3111	0.017	0.003	0.007	0.017
0.3556	0.018	0.004	0.007	0.019
0.4000	0.019	0.005	0.008	0.020
0.4444	0.020	0.006	0.008	0.021
0.4889	0.021	0.007	0.009	0.021
0.5333	0.022	0.008	0.009	0.022
0.5778	0.023	0.009	0.009	0.023
0.6222	0.024	0.010	0.010	0.024
0.6667	0.024	0.011	0.010	0.024
0.7111	0.025	0.012	0.010	0.025
0.7556	0.025	0.013	0.011	0.026
0.8000	0.026	0.014	0.011	0.026
0.8444	0.027	0.016	0.011	0.027
0.8889	0.027	0.017	0.012	0.027
0.9333	0.028	0.018	0.012	0.028
0.9778	0.028	0.019	0.012	0.028
1.0222	0.028	0.020	0.013	0.029
1.0667	0.029	0.022	0.013	0.029
1.1111	0.029	0.023	0.013	0.029
1.1556	0.030	0.024	0.013	0.030

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556	0.030 0.030 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.031 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000	0.026 0.027 0.028 0.030 0.031 0.033 0.034 0.035 0.037 0.038 0.040 0.041 0.043 0.044 0.046 0.047 0.049 0.050 0.051 0.053 0.054 0.056 0.057 0.059 0.059 0.060 0.062 0.063 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.066 0.067 0.069 0.070 0.072 0.073 0.074 0.076	0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.021 0.025 0.026 0.029 0.029 0.029 0.030	0.030 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.033 0
2.0007 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.031 0.030 0.030 0.030 0.029 0.029 0.028 0.028 0.028 0.027 0.027 0.026 0.025 0.025 0.025 0.025 0.025 0.024 0.024 0.024 0.022 0.021 0.020 0.021 0.020 0.019 0.016	0.073 0.074 0.076 0.077 0.079 0.080 0.081 0.082 0.084 0.085 0.086 0.087 0.089 0.090 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.090 0.091 0.095 0.096 0.097 0.098 0.099 0.099 0.090 0.091 0.095 0.096 0.097 0.098 0.099 0.099 0.090 0.091 0.092 0.094 0.095 0.097 0.099 0.099 0.0090 0.091 0.092 0.091 0.092 0.092 0.093 0.094 0.095 0.097 0.098 0.099 0.090 0.091 0.092 0.091 0.095 0.096 0.097 0.099 0.090 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.100 0.100	0.029 0.030 0.031 0.031 0.032 0.033 0.033 0.034 0.035 0.035 0.036 0.036 0.036 0.036 0.037 0.038 0.040 0.041 0.042 0.042 0.042 0.042 0.043 0.045 0.045 0.047	0.033 0

3.7778	0.015	0.101	0.047	0.033
3.8222	0.013	0.102	0.048	0.033
3.8667	0.011	0.102	0.049	0.033
3.9111	0.009	0.103	0.074	0.033
3.9556	0.006	0.103	0.328	0.033
4.0000	0.000	0.103	0.721	0.033
4.0444	0.000	0.000	1.213	0.033

facility volume = 4487cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.525
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.123 Total Impervious Area: 0.402

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0190515 year0.03078210 year0.03869625 year0.04860150 year0.055828

0.062888

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.013584
0.017616
0.020644
0.024893
0.028379
0.032153

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

leal	Freuevelopeu	wiitiyat
1956	0.022	0.013
1957	0.040	0.018
1958	0.012	0.010
1959	0.015	0.013
1960	0.027	0.016
1961	0.018	0.012
1962	0.006	0.011
1963	0.033	0.018
1964	0.023	0.013
1965	0.021	0.013

1966	0.010	0.011
1967	0.020	0.015
1968	0.015	0.013
1969	0.008	0.009
1970	0.016	0.012
1971	0.022	0.014
1972	0.032	0.017
1973	0.017	0.013
1974	0.015	0.011
1975	0.012	0.011
1976	0.027	0.013
1977	0.005	0.010
1978	0.026	0.014
1979	0.023	0.014
1980	0.017	0.014
1981	0.031	0.015
1982	0.016	0.015
1983	0.031	0.017
1984	0.023	0.014
1985	0.007	0.012
1986	0.033	0.017
1987	0.049	0.016
1988	0.010	0.013
1989	0.013	0.012
1990	0.038	0.019
1991	0.055	0.032
1992	0.010	0.012
1993	0.008	0.010
1994	0.007	0.011
1995	0.020	0.016
1996	0.033	0.017
1997	0.018	0.013
1998	0.024	0.014
1999	0.023	0.015
2000	0.025	0.015
2000 2001 2002 2003 2004 2005	0.003 0.024 0.009 0.017	0.010 0.010 0.019 0.010 0.017 0.017
2005	0.016	0.012
2006	0.025	0.015
2007	0.036	0.019
2008	0.058	0.051

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 0.0584 0.0508 1 2345678 0.0550 0.0322 0.0190 0.0488 0.0398 0.0190 0.0379 0.0188 0.0358 0.0182 0.0334 0.0179 0.0332 0.0173 9 0.0329 0.0169 0.0168 0.0321 10 11 0.0307 0.0167

12	0.0305	0.0165
13	0.0268	0.0164
14	0.0265	0.0162
15	0.0255	0.0160
16	0.0251	0.0153
17	0.0246	0.0149
19 20 21 22 23 24 25	0.0235 0.0233 0.0231 0.0230 0.0229 0.0217	0.0147 0.0147 0.0145 0.0143 0.0142 0.0142
23	0.0217	0.0139
26	0.0213	0.0139
27	0.0205	0.0137
28	0.0195	0.0133
29	0.0178	0.0133
30	0.0177	0.0131
31	0.0173	0.0131
32	0.0172	0.0128
33	0.0168	0.0128
34	0.0163	0.0127
35	0.0156	0.0127
36	0.0156	0.0127
37	0.0149	0.0124
38	0.0147	0.0123
39	0.0146	0.0123
40	0.0132	0.0120
41	0.0121	0.0118
42	0.0121	0.0117
43	0.0105	0.0115
44	0.0101	0.0113
45	0.0099	0.0108
46	0.0092	0.0106
47	0.0084	0.0106
48	0.0076	0.0105
49	0.0073	0.0104
50	0.0073	0.0103
51	0.0061	0.0097
52	0.0045	0.0095
53	0.0035	0.0094

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0095	4148	2543	61	Pass
0.0100	3705	2103	56	Pass
0.0105	3289	1738	52	Pass
0.0109	2913	1420	48	Pass
0.0114	2624	1169	44	Pass
0.0119	2359	928	39	Pass
0.0123	2122	758	35	Pass
0.0128	1935	602	31	Pass
0.0133	1718	502	29	Pass
0.0137	1552	411	26	Pass
0.0142	1387	343	24	Pass
0.0147	1241	276	22	Pass
0.0151	1116	229	20	Pass
0.0156	999	193	19	Pass
0.0161	911	165	18	Pass
0.0165	821	137	16	Pass
0.0170	727	109	14	Pass
0.0175	651	91	13	Pass
0.0179	596	76	12	Pass
0.0184	534	65	12	Pass
0.0189	482	40	8	Pass
0.0193	436	32	7	Pass
0.0198	404	30	7	Pass
0.0203	371	30	8	Pass
0.0208	341	29	8	Pass
0.0212	311	28	9	Pass
0.0217	291	28	9	Pass
0.0222	261	28	10	Pass
0.0226	240	27	11	Pass
0.0231	221	27	12	Pass
0.0236	202	27	13	Pass
0.0240	188	27	14	Pass
0.0245	1/5	25	14	Pass
0.0250	163	25	15	Pass
0.0254	147	25	17	Pass
0.0259	135	25	18	Pass
0.0264	128	23	17	Pass
0.0268	113	23	20	Pass
0.0273	108	22	20	Pass
0.0270	100	22	22	Pass
0.0202	92	22	20	Pass Door
0.0207	00	20	22	Pass Door
0.0292	00	20	24	Pass Door
0.0290	74	10	24 25	Pass
0.0301	70 67	10	20	Pass
0.0300	61	17	20	Pass
0.0310	57	17	21	Pass
0.0313	57	10	20	г азэ Dэсс
0.0320	JZ 10	1 4 13	20	Dass
0.0324	43 46	10	20 23	1 000 Dace
0.0329	40 12	11	20 25	г азэ Daec
0.0004	40 //1	11	20	Pase
0.0000	T 1	11	<u>~</u> 0	1 033

0.0343	40	11	27	Pass
0.0348	39	10	25	Pass
0.0352	37	10	27	Pass
0.0357	36	10	27	Pass
0.0362	34	10	29	Pass
0.0367	32	10	31	Pass
0.0371	30	9	30	Pass
0.0376	28	9	32	Pass
0.0381	26	8	30	Pass
0.0385	25	8	32	Pass
0.0390	24	8	33	Pass
0.0395	23	8	34	Pass
0.0399	20	8	40	Pass
0.0404	19	$\frac{l}{2}$	36	Pass
0.0409	18	7	38	Pass
0.0413	17	1	41	Pass
0.0410	16	0	30 27	Pass
0.0423	10	0	37	Pass
0.0427	15	6	40	Pass
0.0432	10	5	40	Pass Dass
0.0437	14	5	35	Pass
0.0441	12	5	<u> </u>	Pass
0.0440	12	5	41	Pass
0.0455	11	4	36	Pass
0.0460	10	3	30	Pass
0.0465	9	3	33	Pass
0.0469	9	3	33	Pass
0.0474	9	2	22	Pass
0.0479	8	2	25	Pass
0.0483	7	2	28	Pass
0.0488	5	2	40	Pass
0.0493	3	2	66	Pass
0.0497	2	2	100	Pass
0.0502	2	2	100	Pass
0.0507	2	1	50	Pass
0.0512	2	0	0	Pass
0.0516	2	0	0	Pass
0.0521	2	0	0	Pass
0.0526	2	0	0	Pass
0.0530	2	0	0	Pass
0.0535	2	0	0	Pass
0.0540	2	U	U	Pass
0.0544	2	U	U	Pass
0.0549	<u>ک</u>	U	U	Pass
0.0554	1	U	U	Pass
0.0000		U	U	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.0563 acre-feetOn-line facility target flow:0.0587 cfs.Adjusted for 15 min:0.0645 cfs.Off-line facility target flow:0.0331 cfs.Adjusted for 15 min:0.0365 cfs.

- WQ flow rate = 14.9gpm

Appendix Predeveloped Schematic

	R	Basin 0.53ac	2B			

Mitigated Schematic

] //	Basin 0.53ac	2B			
	SI					
		Tank ´	1			

<section-header>

General Model Information

Project Name:	Basin B-2C
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 2C

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.469
Pervious Total	0.469
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.469

Element Flows To: Surface In

Interflow

Mitigated Land Use

Basin 2C

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.134
Pervious Total	0.134
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.146 0.161 0.028
Impervious Total	0.335
Basin Total	0.469

Element Flows To:	
Surface	Interflow
Tank 1	Tank 1

Routing Elements Predeveloped Routing

Mitigated Routing		-		
Tank 1			-acility Depth	
Dimensiona	1-			
Dimensions	A 44			
	<u>4 II.</u>			
Iank Type:	Circular			
Diameter:	4 ft.			
Length:	350 ft.			
Infiltration On				
Infiltration rate:	1			
Infiltration safety factor:	1			
Total Volume Infiltrated (a	ac-ft.):	54.787		
Total Volume Through Ri	ser (ac-ft.):	4.688		
Total Volume Through Fa	acility (ac-ft.)): 59.475		
Percent Infiltrated:	, , , ,	92.12		
Total Precip Applied to E	acility.	0		
Total Evan From Facility:	aomry.	Õ		
Discharge Structure		Ũ		Orifice Dierreter
Riser Height:	3 0 ft			— Orffice Diameter
Pisor Diamotor:	24 in			
Orifice 1 Diameter:		n Elovation:0 ft		
Orifice 2 Diameter	0.31231	Elevation:2 E09 ft		
Office 2 Diameter.	0.75 III.		000000000	
Orifice 3 Diameter:	0.5 IN.	Elevation:3.471250	100000003 ft.	
Element Flows 10:	4.40			
Outlet 1 Ou	ltiet 2			

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.000	0.006
0.0889	0.009	0.000	0.000	0.009
0.1333	0.011	0.001	0.001	0.011
0.1778	0.013	0.001	0.001	0.013
0.2222	0.014	0.002	0.001	0.014
0.2667	0.016	0.002	0.001	0.016
0.3111	0.017	0.003	0.001	0.017
0.3556	0.018	0.004	0.001	0.018
0.4000	0.019	0.005	0.001	0.019
0.4444	0.020	0.006	0.001	0.020
0.4889	0.021	0.007	0.001	0.021
0.5333	0.021	0.008	0.001	0.022
0.5778	0.022	0.009	0.002	0.022
0.6222	0.023	0.010	0.002	0.023
0.6667	0.024	0.011	0.002	0.024
0.7111	0.024	0.012	0.002	0.024
0.7556	0.025	0.013	0.002	0.025
0.8000	0.025	0.014	0.002	0.025
0.8444	0.026	0.015	0.002	0.026
0.8889	0.026	0.016	0.002	0.026
0.9333	0.027	0.017	0.002	0.027
0.9778	0.027	0.019	0.002	0.027
1.0222	0.028	0.020	0.002	0.028
1.0667	0.028	0.021	0.002	0.028
1.1111	0.028	0.022	0.002	0.029
1.1556	0.029	0.024	0.002	0.029

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.3556 2.4000 2.4444 2.8889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667	0.029 0.030 0.030 0.030 0.030 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.031 0.031 0.031 0.031 0.031 0.032 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.025 0.025 0.025 0.024 0.021	0.025 0.028 0.029 0.030 0.032 0.033 0.034 0.036 0.037 0.039 0.040 0.040 0.041 0.043 0.044 0.046 0.047 0.049 0.050 0.051 0.053 0.054 0.056 0.057 0.059 0.060 0.061 0.063 0.064 0.066 0.067 0.063 0.064 0.066 0.070 0.063 0.064 0.063 0.070 0.071 0.072 0.074 0.075 0.076 0.079 0.080 0.081 0.083 0.084 0.085 0.085 0.086 0.087 0.088 0.089 0.091 0.092 0.092	0.002 0.003 0.004 0.0015 0.015 0.015 0.016 0.017 0.017 0.017 0.018 0.019	0.029 0.030 0.030 0.030 0.030 0.031 0.031 0.031 0.031 0.031 0.032 0
3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.025 0.024 0.023 0.022 0.021 0.021 0.020 0.019 0.018 0.017 0.016	0.087 0.088 0.089 0.091 0.092 0.093 0.093 0.094 0.095 0.096 0.097 0.098	0.017 0.017 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.024	0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032

3.7778	0.014	0.098	0.025	0.032
3.8222	0.013	0.099	0.026	0.032
3.8667	0.011	0.099	0.026	0.032
3.9111	0.009	0.100	0.052	0.032
3.9556	0.006	0.100	0.305	0.032
4.0000	0.000	0.101	0.698	0.032
4.0444	0.000	0.000	1.190	0.032
		\sim		

----- Facility Volume = 4400cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.469
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.134 Total Impervious Area: 0.335

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0194795 year0.03205210 year0.04088225 year0.05233450 year0.060972

0.069642

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.002976
0.004612
0.005939
0.007925
0.009649
0.0116

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Fredeveloped	wiitigat
1956	0.019	0.003
1957	0.035	0.004
1958	0.012	0.002
1959	0.016	0.003
1960	0.027	0.003
1961	0.017	0.003
1962	0.006	0.002
1963	0.036	0.004
1964	0.021	0.003
1965	0.022	0.003

0.012	0.002
0.018	0.003
0.013	0.003
0.009	0.002
0.015	0.003
0.019	0.003
0.039	0.003
0.016	0.003
0.013	0.002
0.056	0.002
0.027	0.003
0.005	0.002
0.021	0.003
0.035	0.003
0.016	0.003
0.038	0.003
0.014 0.029 0.022	0.003 0.003 0.003 0.003
0.008	0.002
0.030	0.004
0.056	0.004
0.011	0.003
0.016	0.003
0.049	0.004
0.060	0.014
0.011	0.003
0.007	0.002
0.007	0.002
0.019	0.003
0.031	0.004
0.017 0.024 0.021 0.025	$0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003$
0.004	0.002
0.023	0.004
0.010	0.002
0.020	0.004
0.016	0.003
0.022	0.003
0.024	0.004
0.050	0.053
	0.012 0.018 0.013 0.009 0.015 0.019 0.039 0.016 0.030 0.056 0.027 0.005 0.021 0.035 0.016 0.038 0.014 0.029 0.022 0.008 0.014 0.029 0.022 0.008 0.011 0.056 0.011 0.056 0.011 0.049 0.060 0.011 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.021 0.025 0.004 0.021 0.025 0.004 0.025 0.004 0.025 0.010 0.025 0.004 0.025 0.010 0.025 0.010 0.025 0.004 0.025 0.010 0.025 0.010 0.025 0.004 0.025 0.010 0.025 0.004 0.025 0.004 0.025 0.010 0.025 0.004 0.025 0.024 0.020 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.024 0.022 0.024 0.022 0.024 0.022 0.024 0.020 0.024 0.020 0.020 0.020 0.024 0.022 0.024 0.025 0.024 0.020 0.024 0.020 0.024 0.020 0.024 0.025 0.024 0.022 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.050 0.050

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.05980.0532 0.0142 2345678 0.0561 0.0556 0.0042 0.0504 0.0040 0.0039 0.0486 0.0394 0.0037 0.0037 0.0378 0.0355 0.0036 9 0.0354 0.0036 0.0354 0.0036 10 0.0035 11 0.0305

12 13 14 15 16 17	0.0304 0.0288 0.0274 0.0273 0.0246 0.0243	$\begin{array}{c} 0.0035\\ 0.0034\\ 0.0034\\ 0.0033\\ 0.0032\\ 0.0032\end{array}$
18 19 20 21	0.0243 0.0229 0.0225 0.0223 0.0223	0.0032 0.0031 0.0031 0.0030 0.0030
22 23 24 25 26	0.0215 0.0213 0.0213 0.0202	0.0029 0.0029 0.0029 0.0029 0.0029
27	0.0194	0.0029
28	0.0192	0.0028
29	0.0190	0.0028
30	0.0177	0.0028
31	0.0172	0.0028
32	0.0170	0.0027
33	0.0163	0.0027
34	0.0162	0.0027
35	0.0162	0.0027
36	0.0159	0.0027
37 38 39 40	0.0157 0.0151 0.0140 0.0135	0.0026 0.0026 0.0026 0.0026 0.0026
41	0.0133	0.0023
42	0.0118	0.0025
43	0.0118	0.0024
44	0.0114	0.0024
45	0.0106	0.0023
46	0.0103	0.0022
47	0.0086	0.0022
48	0.0075	0.0022
49	0.0074	0.0022
50	0.0069	0.0021
51	0.0061	0.0020
52	0.0049	0.0020
53	0.0038	0.0020

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0097	13775	104	0	Pass
0.0103	11853	101	0	Pass
0.0108	10311	97	0	Pass
0.0113	9036	94	1	Pass
0.0118	7978	89	1	Pass
0.0123	6954	85	1	Pass
0.0128	6112	79	1	Pass
0.0134	5336	73	1	Pass
0.0139	4689	66	1	Pass
0.0144	4133	58	1	Pass
0.0149	3611	56	1	Pass
0.0154	3174	53	1	Pass
0.0159	2788	50	1	Pass
0.0165	2423	46	1	Pass
0.0170	2113	43	2	Pass
0.0175	1875	40	2	Pass
0.0180	1683	38	2	Pass
0.0185	1505	35	2	Pass
0.0191	1368	32	2	Pass
0.0196	1184	30	2	Pass
0.0201	1063	30	2	Pass
0.0206	937	28	2	Pass
0.0211	844	28	3	Pass
0.0216	761	27	3	Pass
0.0222	689	25	3	Pass
0.0227	633	24	3	Pass
0.0232	570	22	3	Pass
0.0237	507	21	4	Pass
0.0242	449	18	4	Pass
0.0247	402	16	3	Pass
0.0253	355	14	3	Pass
0.0258	321	12	3	Pass
0.0263	292	9	3	Pass
0.0268	260	8	3	Pass
0.0273	241	8	3	Pass
0.0279	216	8	3	Pass
0.0284	196	8	4	Pass
0.0289	178	8	4	Pass
0.0294	168	8	4	Pass
0.0299	161	8	4	Pass
0.0304	155	7	4	Pass
0.0310	146	7	4	Pass
0.0315	140	7	5	Pass
0.0320	135	7	5	Pass
0.0325	129	7	5	Pass
0.0330	122	7	5	Pass
0.0335	117	7	5	Pass
0.0341	109	7	6	Pass
0.0346	102	7	6	Pass
0.0351	96	6	6	Pass
0.0356	88	6	6	Pass
0.0361	81	6	7	Pass
0.0366	76	6	7	Pass

0.0372	68	6	8	Pass
0.0377	61	6	9	Pass
0.0382	56	6	10	Pass
0.0387	54	5	9	Pass
0.0392	50	5	10	Pass
0.0398	45	5	11	Pass
0.0403	41	5	12	Pass
0.0408	39	5	12	Pass
0.0413	36	5	13	Pass
0.0418	31	5	16	Pass
0.0423	26	5	19	Pass
0.0429	22	4	18	Pass
0.0434	18	4	22	Pass
0.0439	<u>1</u> 2	4	33	Pass
0.0444	/	4	57	Pass
0.0449	6	3	50	Pass
0.0454	5	2	40	Pass
0.0460	5	2	40	Pass
0.0465	5	2	40	Pass
0.0470	5	2	40	Pass
0.0475	5	2	40	Pass
0.0460	5 5	2	40	Pass
0.0400	5	2	40	Pass Dass
0.0491	4	2	50	Pass
0.0490	4	2	50	Pass Dass
0.0506	- -	2	50 66	Pass
0.0511	3	2	66	Pass
0.0517	3	2	66	Pass
0.0522	3	1	33	Pass
0.0527	3	1	33	Pass
0.0532	3	1	33	Pass
0.0537	3	Ó	0	Pass
0.0542	3	0	0	Pass
0.0548	3	0	0	Pass
0.0553	3	0	0	Pass
0.0558	2	0	0	Pass
0.0563	1	0	0	Pass
0.0568	1	0	0	Pass
0.0573	1	0	0	Pass
0.0579	1	0	0	Pass
0.0584	1	0	0	Pass
0.0589	1	0	0	Pass
0.0594	1	0	0	Pass
0.0599	0	0	0	Pass
0.0605	0	0	0	Pass
0.0610	0	0	0	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.048 acre-feetOn-line facility target flow:0.0514 cfs.Adjusted for 15 min:0.0289 cfs.WQ flow rate = 13gpmAdjusted for 15 min:0.0289 cfs.

Appendix Predeveloped Schematic

	%	Basin 0.47ac	2C			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-2D
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 2D

Surface

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.163
Pervious Total	0.163
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.163
Element Flows To:	

Interflow

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Mod	acre 0.039
Pervious Total	0.039
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.064 0.052 0.008
Impervious Total	0.124
Basin Total	0.163

Element Flows To:	
Surface	Interflow
Tank 1	Tank 1

Routing Elements Predeveloped Routing

Mitigated Routing

Tank 1		- Facility Dep	th
Dimensions			
Depth:	4 ft.		
Tank Type:	Circular		
Diameter:	4 ft.		
Length:	113 ft.		
Infiltration On			
Infiltration rate:	1		
Infiltration safety factor:	1		
Total Volume Infiltrated (a	ic-ft.):	15.391	
Total Volume Through Ris	ser (ac-ft.):	5.825	
Total Volume Through Fa	cility (ac-ft.):	21.216	
Percent Infiltrated:		72.54	
Total Precip Applied to Fa	acility:	0	
Total Evap From Facility:	-	0	orifico dimonsiona
Discharge Structure			
Riser Height:	3.9 ft.		
Riser Diameter:	24 in.		k
Orifice 1 Diameter:	0.375 in. Elevation	n:0 ft.	
Orifice 2 Diameter:	0.5 in. Elevation	า:2.668 ft.	
Orifice 3 Diameter:	0.3125 inElevation	n:3.558750000	00003 ft.
Element Flows To:			
Outlet 1 Ou	tlet 2		

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.002	0.000	0.000	0.002
0.0889	0.003	0.000	0.001	0.003
0.1333	0.003	0.000	0.001	0.003
0.1778	0.004	0.000	0.001	0.004
0.2222	0.004	0.000	0.001	0.004
0.2667	0.005	0.000	0.002	0.005
0.3111	0.005	0.001	0.002	0.005
0.3556	0.005	0.001	0.002	0.006
0.4000	0.006	0.001	0.002	0.006
0.4444	0.006	0.002	0.002	0.006
0.4889	0.006	0.002	0.002	0.006
0.5333	0.007	0.002	0.002	0.007
0.5778	0.007	0.002	0.002	0.007
0.6222	0.007	0.003	0.003	0.007
0.6667	0.007	0.003	0.003	0.007
0.7111	0.007	0.003	0.003	0.008
0.7556	0.008	0.004	0.003	0.008
0.8000	0.008	0.004	0.003	0.008
0.8444	0.008	0.005	0.003	0.008
0.8889	0.008	0.005	0.003	0.008
0.9333	0.008	0.005	0.003	0.008
0.9778	0.008	0.006	0.003	0.009
1.0222	0.009	0.006	0.003	0.009
1.0667	0.009	0.007	0.003	0.009
1.1111	0.009	0.007	0.004	0.009
1.1556	0.009	0.007	0.004	0.009
1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778	0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	0.008 0.009 0.009 0.009 0.009 0.010 0.010 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.016 0.017 0.018	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0	0.009 0.009 0.009 0.009 0.009 0.010 0.000 0.000 0.000 0.000 0
--	--	--	--	--
2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.008 0.008 0.008 0.008 0.008 0.007 0.007	0.018 0.019 0.020 0.020 0.020 0.021 0.021 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.024 0.025 0.025 0.025 0.026 0.026 0.026 0.027 0.027 0.028 0.028 0.029	0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0010 0.010 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012	0.010 0.000 0
3.4222 3.4667 3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.007 0.007 0.006 0.006 0.006 0.005 0.005 0.005	0.029 0.029 0.030 0.030 0.030 0.030 0.031 0.031 0.031	0.012 0.013 0.013 0.013 0.013 0.014 0.014 0.015 0.015	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

3.7778	0.004	0.031	0.015	0.010
3.8222	0.004	0.032	0.016	0.010
3.8667	0.003	0.032	0.016	0.010
3.9111	0.003	0.032	0.041	0.010
3.9556	0.002	0.032	0.294	0.010
4.0000	0.000	0.032	0.687	0.010
4.0444	0.000	0.000	1.179	0.010

— facility volume = 1394cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.163
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.039 Total Impervious Area: 0.124

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.006775 year0.0111410 year0.01420925 year0.01818950 year0.021191100 year0.024204

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.004049
0.005239
0.006131
0.00738
0.008404
0.009512

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

i cai	i reuevelopeu	miliyau
1956	0.007	0.004
1957	0.012	0.005
1958	0.004	0.003
1959	0.006	0.004
1960	0.010	0.005
1961	0.006	0.004
1962	0.002	0.003
1963	0.012	0.005
1964	0.007	0.004
1965	0.008	0.004

1966	0.004	0.003
1967	0.006	0.004
1969	0.003	0.003
1970	0.005	0.004
1971	0.007	0.004
1972	0.014	0.005
1973	0.006	0.004
1974	0.005	0.003
1975	0.020	0.003
1977	0.002	0.003
1978	0.007	0.004
1979	0.012	0.004
1980	0.006	0.004
1981	0.013	0.004
1982	0.005	0.004
1903	0.010	0.005
1985	0.000	0.004
1986	0.011	0.005
1987	0.019	0.005
1988	0.004	0.004
1989	0.005	0.004
1990	0.017	0.006
1991	0.021	0.009
1993	0.003	0.003
1994	0.002	0.003
1995	0.007	0.005
1996	0.011	0.005
1997	0.006	0.004
1998	0.008	0.004
2000	0.007	0.004
2001	0.001	0.003
2002	0.008	0.006
2003	0.004	0.003
2004	0.007	0.005
2005	0.006	0.004
2000	0.000	0.004
2008	0.018	0.015

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 0.0155 0.0208 1 2345678 0.0195 0.0095 0.0193 0.0056 0.0175 0.0056 0.0169 0.0056 0.0137 0.0054 0.0053 0.0131 0.0124 0.0051 9 0.0050 0.0123 0.0123 0.0050 10 0.0050 11 0.0106

12 13	0.0106 0.0100	0.0049 0.0048
14 15	0.0095	0.0048 0.0047
16 17	0.0086	0.0045
18	0.0084	0.0044
19	0.0079	0.0044
20	0.0078	0.0043
22	0.0077	0.0043
23 24	0.0075	0.0042
25	0.0074	0.0041
20 27	0.0070	0.0041
28	0.0067	0.0040
29 30	0.0061	0.0040
31	0.0060	0.0039
33	0.0059	0.0038
34	0.0056	0.0038
36	0.0055	0.0038
37	0.0055	0.0037
39	0.0049	0.0036
40	0.0047	0.0036
42	0.0041	0.0035
43 44	0.0041	0.0034
45	0.0037	0.0033
46 47	0.0036	0.0032
48	0.0026	0.0031
49 50	0.0026	0.0031 0.0031
51	0.0021	0.0029
52 53	0.0017 0.0013	0.0029 0.0028

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0034	13771	4637	33	Pass
0.0036	11837	3490	29	Pass
0.0037	10298	2596	25	Pass
0.0039	9032	2011	22	Pass
0.0041	7962	1573	19	Pass
0.0043	6940	1204	17	Pass
0.0045	6105	928	15	Pass
0.0046	5334	750	14	Pass
0.0048	4685	601	12	Pass
0.0050	4131	467	11	Pass
0.0052	3609	363	10	Pass
0.0054	3172	293	9	Pass
0.0055	2782	218	7	Pass
0.0057	2416	130	5	Pass
0.0059	2109	113	5	Pass
0.0061	1875	97	5	Pass
0.0063	1679	80	4	Pass
0.0064	1504	79	5	Pass
0.0066	1367	78	5	Pass
0.0068	1184	77	6	Pass
0.0070	1062	75	7	Pass
0.0072	936	75	8	Pass
0.0073	844	74	8	Pass
0.0075	761	73	9	Pass
0.0077	688	73	10	Pass
0.0079	632	72	11	Pass
0.0081	570	69	12	Pass
0.0082	506	67	13	Pass
0.0084	449	66	14	Pass
0.0086	402	64	15	Pass
0.0088	355	63	17	Pass
0.0090	321	59	18	Pass
0.0091	292	56	19	Pass
0.0093	260	54	20	Pass
0.0095	240	48	20	Pass
0.0097	216	47	21	Pass
0.0099	196	45	22	Pass
0.0100	178	45	25	Pass
0.0102	168	44	20	Pass
0.0104	101	43	20	Pass
0.0106	155	42	27	Pass
0.0108	146	41	28	Pass
0.0109	140	40	28	Pass
0.0111	135	30	28	Pass
0.0115	130	30	29	Pass
0.0115	122	30	29	Pass
	100	30 22	29 20	rass Door
0.0110	109	33 22	3U 21	Pass
0.0120	102	3Z 20	31 21	rass Doco
0.0124	90 00	30	১। ১০	rass Doco
0.0124	00 01	29 27	ఎ∠ ఎఎ	Pass
0.0120	01 70	21	33 24	Pass
0.0127	<i>/</i> b	24	31	rass

0.0129 0.0131	68 61	23 21	33 34	Pass Pass
0.0133	57	19	33	Pass
0.0135	54	17	31	Pass
0.0136	50	15	30	Pass
0.0138	45	15	33	Pass
0.0140	41	13	31	Pass
0.0142	39	13	33	Pass
0.0144	30	13	30	Pass
0.0147	26	10	38	Pass
0.0149	22	9	40	Pass
0.0151	18	6	33	Pass
0.0153	12	3	25	Pass
0.0154	7	1	14	Pass
0.0156	6	0	0	Pass
0.0158	5	0	0	Pass
0.0160	5	0	0	Pass
0.0162	5	0	0	Pass
0.0165	5	0	0	Pass
0.0167	5	õ	ŏ	Pass
0.0169	5	Õ	Õ	Pass
0.0171	4	0	0	Pass
0.0172	4	0	0	Pass
0.0174	4	0	0	Pass
0.0176	3	0	0	Pass
0.0178	3	0	0	Pass
0.0180	3	0	0	Pass
0.0181	3	0	0	Pass
0.0185	3	Ő	Ö	Pass
0.0187	3	Õ	Õ	Pass
0.0189	3	0	0	Pass
0.0190	3	0	0	Pass
0.0192	3	0	0	Pass
0.0194	2	0	0	Pass
0.0196	1	0	0	Pass
0.0198	1	0	0	Pass
0.0199	1	0	0	Pass
0.0201	1	0	0	Pass
0.0205	1	ŏ	ŏ	Pass
0.0207	1	Ō	Ō	Pass
0.0208	0	0	0	Pass
0.0210	0	0	0	Pass
0.0212	0	0	0	Pass

Water Quality

Water Quality BMP Flow and Volume for POC #1On-line facility volume:0.0174 acre-feetOn-line facility target flow:0.019 cfs.Adjusted for 15 min:0.0107 cfs.Off-line facility target flow:0.0107 cfs.Adjusted for 15 min:0.0107 cfs.WQ flow rate = 4.8gpm

Appendix Predeveloped Schematic

	7	Basin 0.16ac	2D			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Basin B-3
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 3

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.908
Pervious Total	0.908
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.908
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin 3	
Bynass:	

Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Lawn, Flat	acre 0.402	
Pervious Total	0.402	
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.251 0.207 0.048	
Impervious Total	0.506	
Basin Total	0.908	
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1	Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1

Dettern Leneth				facility depth	includina
Bottom Length:	31.30 ft.			1' of froobog	ard
Bottom Width:	<u>31.30</u> ft.				iiu
Depth:	5 ft.				
Volume at riser head:	0.1467 ad	cre-feet.	\leftarrow	faci	lity active
Infiltration On				volu	ime require
Infiltration rate:	1			Voit	
Infiltration safety factor	: 1				
Wetted surface area O	n				
Total Volume Infiltrated	l (ac-ft.):		81.559		
Total Volume Through	Riser (ac-ft.):		23.353		
Total Volume Through	Facility (ac-ft.):		104.912		
Percent Infiltrated:	,		77.74		
Total Precip Applied to	Facility:		0		
Total Evap From Facilit	ty:		Ō		
Side slope 1:	2 To 1				
Side slope 2:	2 To 1				
Side slope 3:	2 To 1				
Side slope 4:	2 To 1		/// rise	r neight requi	red
Discharge Structure					
Riser Height:	4 ft.			Γ	— orifice dimension
Riser Diameter:	18 in.			\checkmark	
Orifice 1 Diameter:	0.84 in.	Elevation	n:0 ft.		
Orifice 2 Diameter:	1.09 in.	Elevation	n:2.598 ft.		
Orifice 3 Diameter:	0.7 in.	Elevation	n:3.454583	33333336 ft.	
Element Flows To:					
Outlet 1	Outlet 2				

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.022	0.000	0.000	0.000
0.0556	0.022	0.001	0.004	0.023
0.1111	0.023	0.002	0.006	0.023
0.1667	0.023	0.003	0.007	0.023
0.2222	0.023	0.005	0.009	0.024
0.2778	0.024	0.006	0.010	0.024
0.3333	0.024	0.007	0.011	0.024
0.3889	0.024	0.009	0.011	0.025
0.4444	0.025	0.010	0.012	0.025
0.5000	0.025	0.012	0.013	0.025
0.5556	0.025	0.013	0.014	0.026
0.6111	0.026	0.014	0.015	0.026
0.6667	0.026	0.016	0.015	0.026
0.7222	0.026	0.017	0.016	0.027
0.7778	0.027	0.019	0.016	0.027
0.8333	0.027	0.020	0.017	0.027
0.8889	0.027	0.022	0.018	0.028
0.9444	0.028	0.023	0.018	0.028
1.0000	0.028	0.025	0.019	0.028
1.0556	0.029	0.027	0.019	0.029
1.1111	0.029	0.028	0.020	0.029
1.1667	0.029	0.030	0.020	0.029
1.2222	0.030	0.032	0.021	0.030

1.2778 1.3333 1.3889 1.4444 1.5000 1.5556 1.6111 1.6667 1.7222 1.7778 1.8333 1.8889 1.9444 2.0000 2.0556 2.1111 2.1667 2.2222 2.2778 2.3333 2.3889 2.4444 2.5000 2.5556 2.6111 2.6667 2.7222 2.7778 2.8333 2.8889 2.9444 3.0000 3.0556 3.1111 3.1667 3.2222 3.2778 3.3333 3.3889 2.9444 3.0000 3.0556 3.1111 3.1667 3.2222 3.2778 3.3333 3.3889 3.4444 3.5000 3.5556 3.6111 3.6667 3.7222 3.7778 3.8333 3.8889 3.9444	0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.034 0.035 0.035 0.035 0.035 0.036 0.037 0.037 0.037 0.037 0.037 0.038 0.038 0.039 0.040 0.040 0.040 0.041 0.041 0.041 0.041 0.042 0.042 0.043 0.044 0.045 0.045 0.046 0.047 0.049 0.049 0.050 0.050	0.033 0.035 0.037 0.038 0.040 0.042 0.044 0.046 0.047 0.049 0.051 0.053 0.055 0.057 0.059 0.061 0.063 0.065 0.067 0.069 0.071 0.073 0.076 0.078 0.080 0.082 0.085 0.087 0.089 0.091 0.094 0.094 0.094 0.094 0.099 0.101 0.103 0.106 0.111 0.114 0.112 0.121 0.121 0.122 0.132 0.135 0.138 0.141	0.021 0.022 0.023 0.023 0.023 0.023 0.024 0.024 0.025 0.025 0.025 0.025 0.026 0.027 0.027 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.031 0.033 0.043 0.045 0.047 0.049 0.051 0.055 0.055 0.056 0.058 0.059 0.055 0.056 0.058 0.059 0.061 0.062 0.063 0.065 0.063 0.071 0.074 0.076 0.078 0.079 0.081 0.083 0.084	0.030 0.031 0.031 0.031 0.032 0.032 0.033 0.033 0.033 0.033 0.034 0.035 0.035 0.035 0.035 0.036 0.037 0.038 0.040 0.041 0.041 0.042 0.042 0.043 0.043 0.043 0.043 0.044 0.045 0.045 0.045 0.046 0.047 0.048 0.048 0.049 0.050 0.050 0.051	
3.9444	0.050	0.141	0.084	0.051	
4.0556	0.051	0.145	0.296	0.051	facility volume = 6229cf
4.1111	0.052	0.149	0.677	0.052	
4.1667	0.052	0.152	1.165	0.053	
4.2222	0.053	0.155	1.729	0.053	
4.2778	0.053	0.158	2.342	0.054	
4.3333	0.054	0.161	2.977	0.054	
4.3889 4.4444	0.054 0.055	0.164 0.167	3.606 4.201	0.055	
	0.000	0.101		5.000	

4.5000	0.055	0.170	4.737	0.056
4.5556	0.056	0.173	5.197	0.056
4.6111	0.056	0.176	5.569	0.057
4.6667	0.057	0.180	5.856	0.057
4.7222	0.057	0.183	6.078	0.058
4.7778	0.058	0.186	6.354	0.058
4.8333	0.058	0.189	6.575	0.059
4.8889	0.059	0.193	6.788	0.059
4.9444	0.059	0.196	6.995	0.060
5.0000	0.060	0.199	7.196	0.060
5.0556	0.060	0.203	7.391	0.061

Analysis Results POC 1

+ Predeveloped x N

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.908
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.402 Total Impervious Area: 0.506

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0377135 year0.06205410 year0.0791525 year0.1013250 year0.118043100 year0.134829

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.022751
5 year	0.031345
10 year	0.037984
25 year	0.047529
50 year	0.055537
100 year	0.064363

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Preaevelopea	wiitigate
1956	0.038	0.022
1957	0.069	0.030
1958	0.023	0.016
1959	0.031	0.021
1960	0.053	0.027
1961	0.033	0.020
1962	0.012	0.016
1963	0.069	0.030
1964	0.041	0.022
1965	0.043	0.022

1.0

0.1

0.01

0.001

1966 1967	0.023	0.017
1968	0.026	0.020
1969	0.017	0.015
1970	0.029	0.020
1971	0.037	0.024
1973	0.032	0.020
1974	0.026	0.018
1975	0.109	0.018
1976	0.053	0.023
1977	0.009	0.016
1978	0.042	0.023
1979	0.009	0.023
1981	0.073	0.025
1982	0.027	0.026
1983	0.056	0.028
1984	0.043	0.023
1985	0.015	0.018
1980	0.059	0.030
1988	0.100	0.029
1989	0.030	0.020
1990	0.094	0.043
1991	0.116	0.064
1992	0.020	0.020
1993	0.014	0.014
1995	0.013	0.010
1996	0.059	0.030
1997	0.033	0.022
1998	0.047	0.023
1999	0.041	0.025
2000	0.048	0.026
2001	0.007	0.013
2003	0.020	0.014
2004	0.039	0.029
2005	0.031	0.021
2006	0.043	0.026
2007	0.047 0.008	0.045 0.080
2000	0.030	0.003

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.11580.0895 2345678 0.1086 0.0636 0.0452 0.1076 0.0977 0.0430 0.0940 0.0425 0.0763 0.0303 0.0301 0.0731 0.0688 0.0297 9 0.0686 0.0296 0.0289 10 0.0685 11 0.0591 0.0289

12 13 14	0.0589 0.0558 0.0531	0.0284 0.0279 0.0274
15 16	0.0528 0.0477	0.0265 0.0261
18	0.0471 0.0470	0.0259
20	0.0442	0.0233
22	0.0432	0.0242
23 24 25	0.0413	0.0232
26 27	0.0392	0.0231
28 29	0.0372	0.0230
30 31	0.0342 0.0333	0.0223
32 33	0.0329 0.0316	0.0217 0.0216
34 35	0.0314 0.0314	0.0215 0.0210
36 37	0.0307 0.0305	0.0210 0.0204
38 39	0.0292 0.0271	0.0200 0.0200
40 41	0.0261 0.0260	0.0199 0.0196
42 43	0.0229	0.0183
44 45 46	0.0222	0.0176
40 47 48	0.0166	0.0157
49	0.0144	0.0156
51 52	0.0117	0.0147
53	0.0073	0.0138

Duration Flows

The Facility PASSED

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0189	13786	5204	37	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0199	11840	4183	35	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0209	10296	3315	32	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0219	9030	2637	29	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0229	7965	2091	26	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0239	6945	1726	24	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0249	6111	1411	23	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0259	5339	1126	21	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0269	4685	880	18	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0279	4131	678	16	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0289	3609	505	13	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0299	3176	349	10	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0309	2788	278	9	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0319	2418	270	11	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0329	2111	264	12	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0339	1875	258	13	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0349	1679	253	15	Pass
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0359	1504	245	16	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0369	1367	238	17	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0379	1184	233	19	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0389	1062	222	20	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0399	936	208	22	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0409	844	191	22	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0419	762	180	23	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0429	688	163	23	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0439	632	140	22	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0449	570	132	23	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0459	507	126	24	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0469	449	123	27	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0479	402	121	30	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0489	355	117	32	Pass
0.0509 292 112 38 Pass 0.0519 260 107 41 Pass 0.0529 240 104 43 Pass 0.0539 216 100 46 Pass 0.0549 196 97 49 Pass 0.0559 178 94 52 Pass 0.0569 168 91 54 Pass 0.0579 161 87 54 Pass 0.0589 154 79 51 Pass 0.0599 146 74 50 Pass 0.0609 140 69 49 Pass 0.0619 135 63 46 Pass 0.0629 129 57 44 Pass 0.0639 122 48 39 Pass 0.0669 102 43 42 Pass 0.0669 102 43 42 Pass 0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0499	321	115	35	Pass
0.0519 260 107 41 Pass 0.0529 240 104 43 Pass 0.0539 216 100 46 Pass 0.0549 196 97 49 Pass 0.0559 178 94 52 Pass 0.0569 168 91 54 Pass 0.0579 161 87 54 Pass 0.0589 154 79 51 Pass 0.0599 146 74 50 Pass 0.0609 140 69 49 Pass 0.0619 135 63 46 Pass 0.0629 129 57 44 Pass 0.0639 122 48 39 Pass 0.0649 117 46 39 Pass 0.0669 102 43 42 Pass 0.0669 102 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0509	292	112	38	Pass
0.0529 240 104 43 Pass 0.0539 216 100 46 Pass 0.0549 196 97 49 Pass 0.0559 178 94 52 Pass 0.0569 168 91 54 Pass 0.0579 161 87 54 Pass 0.0589 154 79 51 Pass 0.0599 146 74 50 Pass 0.0609 140 69 49 Pass 0.0619 135 63 46 Pass 0.0629 129 57 44 Pass 0.0639 122 48 39 Pass 0.0649 117 46 39 Pass 0.0659 109 45 41 Pass 0.0669 102 43 42 Pass 0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0519	260	107	41	Pass
0.0539 216 100 460 Pass 0.0549 196 97 49 Pass 0.0559 178 94 52 Pass 0.0569 168 91 54 Pass 0.0579 161 87 54 Pass 0.0589 154 79 51 Pass 0.0599 146 74 50 Pass 0.0609 140 69 49 Pass 0.0619 135 63 46 Pass 0.0629 129 57 44 Pass 0.0639 122 48 39 Pass 0.0649 117 46 39 Pass 0.0659 109 45 41 Pass 0.0669 102 43 42 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0529	240	104	43	Pass
0.05491909749Pass0.05591789452Pass0.05691689154Pass0.05791618754Pass0.05891547951Pass0.05991467450Pass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0539	210	100	40	Pass
0.05391769452Pass0.05691689154Pass0.05791618754Pass0.05891547951Pass0.05991467450Pass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0549	190	97	49 50	Pass
0.05091009154Pass0.05791618754Pass0.05891547951Pass0.05991467450Pass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0559	168	94	52	Pass Dass
0.05791010754Pass0.05891547951Pass0.05991467450Pass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0509	161	91 97	54	Pass Dass
0.050910473511 ass0.05991467450Pass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0579	151	70	54	Dass
0.053314074501 ass0.06091406949Pass0.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0509	1/6	7/	50	Dass
0.0003140034314330.06191356346Pass0.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0000	140	60	10	Pass
0.0619103034010330.06291295744Pass0.06391224839Pass0.06491174639Pass0.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0619	135	63	46	Pass
0.0625 125 37 44 1435 0.0639 122 48 39 Pass 0.0649 117 46 39 Pass 0.0659 109 45 41 Pass 0.0669 102 43 42 Pass 0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0629	129	57	40	Pass
0.0600 122 40 00 100 100 0.0649 117 46 39 Pass 0.0659 109 45 41 Pass 0.0669 102 43 42 Pass 0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0023	123	48	20	Pass
0.0649109456063914330.06591094541Pass0.06691024342Pass0.0679964344Pass0.0690884247Pass0.0700814251Pass0.0710764153Pass	0.0649	117	46	30	Pass
0.0669 102 43 42 Pass 0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0659	109	45	41	Pass
0.0679 96 43 44 Pass 0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0669	102	43	42	Pass
0.0690 88 42 47 Pass 0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0679	96	43	44	Pass
0.0700 81 42 51 Pass 0.0710 76 41 53 Pass	0.0690	88	42	47	Pass
0.0710 76 41 53 Pass	0.0700	81	42	51	Pass
	0.0710	76	41	53	Pass

0.0720	68 61	40	58	Pass
0.0730	56	38 38	63 67	Pass
0.0750	54	36	66	Pass
0.0760	50	35	70	Pass
0.0770	45	34	75	Pass
0.0780	41	32	78	Pass
0.0790	39	30	76	Pass
0.0800	36	29	80	Pass
0.0810	31	26	83	Pass
0.0820	26	23	88	Pass
0.0630	22 19	19	00	Pass
0.0840	12	12	100	Pass
0.0860	7	7	100	Pass
0.0870	6	2	33	Pass
0.0880	5	2	40	Pass
0.0890	5	2	40	Pass
0.0900	5	0	0	Pass
0.0910	5	0	0	Pass
0.0920	5	0	0	Pass
0.0930	5	0	0	Pass
0.0940	5	0	0	Pass Dass
0.0950	4	0	0	Pass
0.0970	4	õ	ŏ	Pass
0.0980	3	Ō	Ō	Pass
0.0990	3	0	0	Pass
0.1000	3	0	0	Pass
0.1010	3	0	0	Pass
0.1020	3	0	0	Pass
0.1030	3	0	0	Pass
0.1040	3	0	0	Pass
0.1060	3	Õ	Õ	Pass
0.1070	3	Õ	Õ	Pass
0.1080	2	0	0	Pass
0.1090	1	0	0	Pass
0.1100	1	0	0	Pass
0.1110	1	0	0	Pass
0.1120	1	0	0	Pass
0.1130	1	0	0	Pass
0.1150	1	0	0	Pass
0.1160	Ö	ŏ	õ	Pass
0.1170	Ō	Õ	Õ	Pass
0.1180	0	0	0	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.0797 acre-feetOn-line facility target flow:0.0785 cfs.Adjusted for 15 min:0.0785 cfs.Off-line facility target flow:0.044 cfs.WQ flow rate = 19.8gpmAdjusted for 15 min:0.044 cfs.

Appendix Predeveloped Schematic

	7	Basin 0.91ac	3			

Mitigated Schematic

	! //	Basin 0.91ac	3			
	SI					
		Trapez Pond	oidal 1			

<section-header>

General Model Information

Project Name:	Basin B-4
Site Name:	Jackson Villas 4
Site Address:	
City:	Chehalis
Report Date:	1/25/2021
Gage:	Olympia
Data Start:	1955/10/01
Data End:	2008/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 4

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.918
Pervious Total	0.918
Impervious Land Use ROOF TOPS FLAT	acre 0.046
Impervious Total	0.046
Basin Total	0.964
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin 4

Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Lawn, Flat	acre 0.329	
Pervious Total	0.329	
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 0.378 0.207 0.05	
Impervious Total	0.635	
Basin Total	0.964	
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1	Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1			facility depth including
Bottom Length:	44.00 ft.		1' of freeboard
Bottom Width:	44.00 ft.		
Depth:	3 ft.		activo storado volumo
Volume at riser head:	0.1251 acre-feet.]←	
Infiltration On			required
Infiltration rate:	1		
Infiltration safety factor:	1		
Wetted surface area On			
Total Volume Infiltrated	(ac-ft.):	91.447	
Total Volume Through R	Riser (ac-ft.):	27.119	
Total Volume Through F	acility (ac-ft.):	118.565	
Percent Infiltrated:		77.13	
Total Precip Applied to F	acility:	0	
Total Evap From Facility	/:	0	
Side slope 1:	4 To 1		
Side slope 2:	4 To 1		
Side slope 3:	4 To 1	ricor b	oight required
Side slope 4:	4 To 1		eight iequired
Discharge Structure			
Riser Height:	2 ft. 🦉		orifice dimensions
Riser Diameter:	18 in.	K	
Orifice 1 Diameter:	1.5 in. Elevatio	on:0 ft.	
Orifice 2 Diameter:	1.3125 inElevation	on:1.8875 ft.	
Orifice 3 Diameter:	0.8125 inElevatio	on:1.9 ft.	
Element Flows To:			
Outlet 1 O	outlet 2		

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.044	0.000	0.000	0.000
0.0333	0.045	0.001	0.011	0.045
0.0667	0.045	0.003	0.015	0.045
0.1000	0.046	0.004	0.019	0.046
0.1333	0.046	0.006	0.022	0.047
0.1667	0.047	0.007	0.024	0.047
0.2000	0.047	0.009	0.027	0.048
0.2333	0.048	0.010	0.029	0.048
0.2667	0.048	0.012	0.031	0.049
0.3000	0.049	0.014	0.033	0.049
0.3333	0.050	0.015	0.035	0.050
0.3667	0.050	0.017	0.037	0.051
0.4000	0.051	0.019	0.038	0.051
0.4333	0.051	0.020	0.040	0.052
0.4667	0.052	0.022	0.041	0.052
0.5000	0.052	0.024	0.043	0.053
0.5333	0.053	0.026	0.044	0.053
0.5667	0.054	0.027	0.046	0.054
0.6000	0.054	0.029	0.047	0.055
0.6333	0.055	0.031	0.048	0.055
0.6667	0.055	0.033	0.049	0.056
0.7000	0.056	0.035	0.051	0.056
0.7333	0.057	0.037	0.052	0.057

0.7667 0.8000 0.8333 0.8667 0.9000 0.9333 0.9667 1.0000 1.0333 1.0667 1.1000 1.1333 1.1667 1.2000 1.2333 1.2667 1.3000 1.3333 1.3667 1.4000 1.4333 1.4667 1.5000	0.057 0.058 0.059 0.060 0.060 0.061 0.062 0.062 0.063 0.064 0.064 0.065 0.066 0.066 0.066 0.067 0.067 0.067 0.068 0.069 0.070 0.071 0.072	0.039 0.041 0.042 0.044 0.046 0.048 0.051 0.053 0.055 0.057 0.059 0.061 0.063 0.065 0.068 0.070 0.072 0.074 0.077 0.079 0.081 0.084 0.086	0.053 0.054 0.055 0.056 0.057 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.065 0.066 0.065 0.066 0.067 0.068 0.069 0.071 0.072 0.073 0.073 0.074	0.058 0.059 0.060 0.060 0.061 0.062 0.062 0.063 0.063 0.063 0.064 0.065 0.065 0.065 0.066 0.067 0.067 0.068 0.069 0.069 0.070 0.071 0.071 0.072	
1.5333 1.5667	0.072 0.073	0.088 0.091	0.075 0.076	0.072	
1.6000	0.074	0.093	0.077	0.074	
1.6333	0.074	0.096	0.078	0.075	
1.6667	0.075	0.098	0.078	0.076	
1.7000	0.076	0.101	0.079	0.076	
1.7333	0.076	0.103	0.080	0.077	
1.7667	0.077	0.106	0.081	0.078	
1.8000	0.078	0.109	0.081	0.078	
1.8667	0.079	0.114	0.083	0.080	
1.9000	0.080	0.117	0.089	0.081	
1.9333	0.081	0.119	0.098	0.081	
1.9667	0.081	0.122	0.103	0.082	
2.0000	0.082	0.125 <	0.107	0.083	pond storage volume
2.0333	0.083	0.127	0.208	0.084	= 5445cf
2.0007	0.084	0.130	0.500	0.085	
2.1333	0.085	0.136	0.892	0.086	
2.1667	0.086	0.139	1.198	0.087	
2.2000	0.087	0.142	1.531	0.087	
2.2333	0.087	0.145	1.885	0.088	
2.2667	0.088	0.148	2.255	0.089	
2.3000	0.009	0.150	3 018	0.090	
2.3667	0.090	0.156	3.400	0.091	
2.4000	0.091	0.160	3.772	0.092	
2.4333	0.092	0.163	4.131	0.093	
2.4667	0.093	0.166	4.471	0.094	
2.5000	0.094	0.169	4.786	0.094	
2.5555	0.094	0.172	5 329	0.095	
2.6000	0.096	0.178	5.554	0.097	
2.6333	0.097	0.182	5.747	0.098	
2.6667	0.098	0.185	5.911	0.098	

2.7000	0.098	0.188	6.051	0.099
2.7333	0.099	0.191	6.174	0.100
2.7667	0.100	0.195	6.367	0.101
2.8000	0.101	0.198	6.502	0.102
2.8333	0.102	0.201	6.634	0.102
2.8667	0.102	0.205	6.764	0.103
2.9000	0.103	0.208	6.891	0.104
2.9333	0.104	0.212	7.017	0.105
2.9667	0.105	0.215	7.139	0.106
3.0000	0.106	0.219	7.260	0.107
3.0333	0.107	0.222	7.379	0.107

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.918
Total Impervious Area:	0.046

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.329 Total Impervious Area: 0.635

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 0.050842 2 year 0.078374 5 year 10 year 0.097793 25 year 0.123378 50 year 0.143078 100 year 0.163255

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.042417
0.054166
0.061719
0.071084
0.077965
0.084788

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Predeveloped	wiitigate
1956	0.048	0.041
1957	0.089	0.064
1958	0.036	0.031
1959	0.046	0.040
1960	0.064	0.051
1961	0.046	0.032
1962	0.017	0.028
1963	0.094	0.063
1964	0.057	0.040
1965	0.056	0.046

1966 1967	0.034 0.044	0.028 0.046
1968	0.036	0.038
1970	0.025	0.020
1971	0.047	0.044
1972 1973	0.093	0.053
1974	0.039	0.036
1975	0.129	0.032
1976 1977	0.066	0.041
1978	0.060	0.047
1979	0.089	0.044
1980	0.044	0.039
1982	0.044	0.044
1983	0.074	0.059
1964	0.025	0.042
1986	0.074	0.059
1987	0.133	0.057
1989	0.046	0.033
1990	0.116	0.069
1991 1992	0.141	0.071
1993	0.019	0.025
1994	0.019	0.029
1995	0.045	0.055
1997	0.044	0.036
1998	0.067	0.049
2000	0.065	0.048
2001	0.018	0.031
2002	0.055	0.061
2004	0.052	0.054
2005	0.038	0.035
2000	0.052	0.044
2008	0.121	0.087

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 0.1405 0.0867 1 2345678 0.1329 0.0712 0.1286 0.0688 0.1210 0.0639 0.1156 0.0628 0.0938 0.0614 0.0610 0.0934 0.0933 0.0589 9 0.0894 0.0587 0.0894 0.0573 10 0.0549 0.0740 11
12 13 14 15 16 17 18 19 20 21 22 23 24	0.0738 0.0705 0.0681 0.0669 0.0664 0.0651 0.0645 0.0604 0.0574 0.0550 0.0553 0.0550	0.0537 0.0534 0.0516 0.0509 0.0506 0.0494 0.0481 0.0479 0.0467 0.0463 0.0461 0.0444 0.0438
25 26 27 28 29 30 31 32 33 34 35 36 37	0.0523 0.0515 0.0484 0.0466 0.0460 0.0459 0.0459 0.0445 0.0445 0.0444 0.0444 0.0438 0.0436 0.0392	$\begin{array}{c} 0.0438\\ 0.0437\\ 0.0421\\ 0.0415\\ 0.0412\\ 0.0403\\ 0.0400\\ 0.0394\\ 0.0385\\ 0.0379\\ 0.0375\\ 0.0363\\ 0.0361\end{array}$
38 39 40 41 42 43 44 45 46 47 48 49 50	0.0391 0.0390 0.0378 0.0356 0.0356 0.0339 0.0315 0.0308 0.0286 0.0273 0.0252 0.0247 0.0247 0.0192	$\begin{array}{c} 0.0360\\ 0.0357\\ 0.0355\\ 0.0353\\ 0.0339\\ 0.0333\\ 0.0320\\ 0.0319\\ 0.0314\\ 0.0306\\ 0.0293\\ 0.0283\\ 0.0277\\ 0.0277\\ 0.0277\end{array}$
52 53	0.0176 0.0178 0.0168	0.0257 0.0252 0.0242

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0254	7871	5875	74	Pass
0.0266	6824	5243	76	Pass
0.0278	5897	4661	79	Pass
0.0290	5172	4148	80	Pass
0.0302	4505	3656	81	Pass
0.0314	3866	3237	83	Pass
0.0326	3329	2853	85	Pass
0.0337	2912	2531	86	Pass
0.0349	2567	2247	87	Pass
0.0361	2230	1985	89	Pass
0.0373	1977	1740	88	Pass
0.0385	1737	1537	88	Pass
0.0397	1549	1372	88	Pass
0.0409	1374	1225	89	Pass
0.0421	1223	1111	90	Pass
0.0432	1078	989	91	Pass
0.0444	962	892	92	Pass
0.0456	865	801	92	Pass
0.0468	771	707	91	Pass
0.0480	686	611	89	Pass
0.0492	588	532	90	Pass
0.0504	526	487	92	Pass
0.0516	464	430	92	Pass
0.0528	428	391	91	Pass
0.0539	393	345	87	Pass
0.0551	362	310	85	Pass
0.0563	323	276	85	Pass
0.0575	290	244	84	Pass
0.0587	266	211	79	Pass
0.0599	240	185	77	Pass
0.0611	214	154	71	Pass
0.0623	194	134	69	Pass
0.0635	181	119	65	Pass
0.0646	169	104	61	Pass
0.0658	154	96	62	Pass
0.0670	143	90	62	Pass
0.0682	131	79	60	Pass
0.0694	125	63	50	Pass
0.0706	113	57	50	Pass
0.0718	109	47	43	Pass
0.0730	99	45	45	Pass
0.0741	94	42	44	Pass
0.0753	90	40	44	Pass
0.0765	8 I 7 F	31	45	Pass
0.0777	75 70	34	40	Pass
0.0789	12	31	43	Pass
0.0001	00	∠0 22	4 I 25	rass Door
0.0013	04 60	23 17	ა ე ეი	rass Door
0.0020	0U 56	17	∠0 17	rass Door
0.0031	00 54		17	rass Doco
0.0040	04 70	0	14 6	rass Doco
0.0000	4ð 44	3	0 0	Pass
0.0012	44	U	U	rass

0.0884	41	0	0	Pass
0.0896	36	0	0	Pass
0.0908	34	0	0	Pass
0.0920	30	0	0	Pass
0.0932	29	0	0	Pass
0.0944	20	0	0	Pass
0.0955	16	0	0	Pass
0.0967	13	0	0	Pass
0.0979	12	0	0	Pass
0.0991	10	0	0	Pass
0.1003	8	0	0	Pass
0.1015	/	0	0	Pass
0.1027	6	0	0	Pass
0.1039	5	0	0	Pass
0.1050	5	0	0	Pass
0.1062	5	0	0	Pass
0.1074	5	0	0	Pass
0.1086	5	0	0	Pass
0.1098	5	0	0	Pass
0.1110	5	0	0	Pass
0.1122	5 5	0	0	Pass
0.1134	5	0	0	Pass
0.1140	5	0	0	Pass
0.1160	4	0	0	Pass
0.1103	4	0	0	Pass
0.1101	4	0	Ő	Pass
0 1205	4	Õ	Õ	Pass
0.1217	3	Õ	Õ	Pass
0.1229	3	Õ	Õ	Pass
0.1241	3	Õ	Õ	Pass
0.1253	3	Ō	Ō	Pass
0.1264	3	0	0	Pass
0.1276	3	0	0	Pass
0.1288	2	0	0	Pass
0.1300	2	0	0	Pass
0.1312	2	0	0	Pass
0.1324	2	0	0	Pass
0.1336	1	0	0	Pass
0.1348	1	0	0	Pass
0.1359	1	0	0	Pass
0.1371	1	0	0	Pass
0.1383	1	0	0	Pass
0.1395	1	0	0	Pass
0.1407	0	0	0	Pass
0.1419	0	0	Û	Pass
0.1431	0	U	U	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.0939 acre-feetOn-line facility target flow:0.0986 cfs.Adjusted for 15 min:0.0986 cfs.Off-line facility target flow:0.0554 cfs.Adjusted for 15 min:0.0554 cfs.WQ flow rate = 24.9gpm

Appendix Predeveloped Schematic

	帰	Basin 0.96ac	4			

Mitigated Schematic

	9 77	Basin 0.96ac	4			
	SI					
		Trapez Pond	oidal 1			

SECTION 6 – CONSTRUCTION SWPPP

This project is required to prepare a construction Storm Water Pollution Prevention Plan in accordance with Minimum Requirement #2 and must be prepared in accordance with Volume II chapter 3 of the SWMMWW.

This drainage and erosion control report is intended to supplement the construction SWPPP by utilizing other sections in this report to cover required narrative elements. Also, the construction and erosion control plans supplied for the project are to act as the required drawing component of the construction SWPPP.

Intended BMPs which should be used during construction include but are not limited to:

- BMP C101: Preserving Natural Vegetation
- BMP C102: Buffer Zones
- BMP C103: High Visibility Fence
- BMP C105: Stabilized Construction Entrance / Exit
- BMP C120: Temporary and Permanent Seeding
- BMP C123: Plastic Covering
- BMP C125: Topsoiling / Composting
- BMP C140: Dust Control
- BMP C153: Material Delivery, Storage and Containment
- BMP C160: Certified Erosion and Sediment Control Lead
- BMP C162: Scheduling
- BMP C233: Silt Fence

CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

FOR

Jackson Villa Expansion 4

0 Jackson Highway Chehalis, WA 98532

Prepared by:

1101 Kresky Ave. Centralia, WA 98531 (360) 807-4420

General Requirements

Clearing and grading activities for this project shall be permitted only to the approved site development plan. These clearing and grading areas were established to preserve sensitive areas, buffers, native growth protection easements, and tree retention areas. These areas are delineated on the site plans and shall be marked on the development site.

The SWPPP shall be implemented beginning with initial land disturbance and until final stabilization. Sediment and Erosion control BMPs shall be consistent with the BMPs contained in chapters 3 and 4 of Volume II of the SWMMWW.

Seasonal Work Limitations - From October 15 through April 1, clearing, grading, and other soil disturbing activities shall only be permitted if shown to the satisfaction of the local permitting authority that silt-laden runoff will be prevented from leaving the site through a combination of the following:

- 1. Site conditions including existing vegetative coverage, slope, soil type and proximity to receiving waters.
- 2. Limitations on activities and the extent of disturbed areas.
- 3. Proposed erosion and sediment control measures.

Project Requirements - Construction SWPPP Elements

In most cases, all the following elements shall apply and be implemented throughout construction. Self-contained sites (discharges only to groundwater) must comply with all elements except for Element 3: Control Flow Rates.

Element 1: Preserve Vegetation/Mark Clearing Limits

- Before beginning land disturbing activities, including clearing and grading, clearly mark all clearing limits, sensitive areas and their buffers, and trees that are to be preserved within the construction area.
- Retain the duff layer, native topsoil, and natural vegetation in an undisturbed state to the maximum degree practicable.

Element 2: Establish Construction Access

- Limit construction vehicle access and exit to one route, if possible.
- Stabilize access points with a pad of quarry spalls, crushed rock, or other equivalent BMPs, to minimize tracking of sediment onto public roads.
- Locate wheel wash or tire baths on site, if the stabilized construction entrance is not effective in preventing tracking sediment onto roads.
- If sediment is tracked off site, clean the affected roadway thoroughly at the end of each day, or more frequently as necessary (for example, during wet weather). Remove sediment from roads by shoveling, sweeping, or pick up and transport the sediment to a controlled sediment disposal area.
- Conduct street washing only after sediment is removed in accordance with the above bullet.

• Control street wash wastewater by pumping back on-site, or otherwise prevent it from discharging into systems tributary to waters of the State.

Element 3: Control Flow Rates

- Protect properties and waterways downstream of development sites from erosion and the associated discharge of turbid waters due to increases in the velocity and peak volumetric flow rate of stormwater runoff from the project site.
- Where necessary to comply with the bullet above, construct stormwater retention or detention facilities as one of the first steps in grading. Assure that detention facilities function properly before constructing site improvements (e.g. impervious surfaces).
- If permanent infiltration ponds are used for flow control during construction, protect these facilities from siltation during the construction phase.

Element 4: Install Sediment Controls

- Design, install, and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants.
- Construct sediment control BMPs (sediment ponds, traps, filters, etc.) as one of the first steps in grading. These BMPs shall be functional before other land disturbing activities take place.
- Minimize sediment discharges from the site. The design, installation and maintenance of erosion and sediment controls must address factors such as the amount, frequency, intensity and duration of precipitation, the nature of resulting stormwater runoff, and soil characteristics, including the range of soil particle sizes expected to be present on the site.
- Direct stormwater runoff from disturbed areas through a sediment pond or other appropriate sediment removal BMP, before the runoff leaves a construction site or before discharge to an infiltration facility. Runoff from fully stabilized areas may be discharged without a sediment removal BMP but must meet the flow control performance standard in Element #3, bullet #1.
- Locate BMPs intended to trap sediment on-site in a manner to avoid interference with the movement of juvenile salmonids attempting to enter off-channel areas or drainages.
- Where feasible, design outlet structures that withdraw impounded stormwater from the surface to avoid discharging sediment that is still suspended lower in the water column.

Element 5: Stabilize Soils

- Stabilize exposed and unworked soils by application of effective BMPs that prevent erosion. Applicable BMPs include but are not limited to: temporary and permanent seeding, sodding, mulching, plastic covering, erosion control fabrics and matting, soil application of polyacrylamide (PAM), the early application of gravel base early on areas to be paved, and dust control.
- Control stormwater volume and velocity within the site to minimize soil erosion.
- Control stormwater discharges, including both peak flow rates and total stormwater volume, to minimize erosion at outlets and to minimize downstream channel and stream bank erosion.
- Soils must not remain exposed and unworked for more than the time periods set forth below to prevent erosion:
 - During the dry season (April 2 October 14): 7 days

- During the wet season (October 15 April 1): 2 days
- Note that projects performing work under a NPDES Construction Stormwater General Permit issued by Ecology will have more restrictive time periods.
- Stabilize soils at the end of the shift before a holiday or weekend if needed based on the weather forecast.
- Stabilize soil stockpiles from erosion, protected with sediment trapping measures, and where possible, be located away from storm drain inlets, waterways and drainage channels.
- Minimize the amount of soil exposed during construction activity.
- Minimize the disturbance of steep slopes.
- Minimize soil compaction and, unless infeasible, preserve topsoil.

Element 6: Protect Slopes

- Design and construct cut-and-fill slopes in a manner to minimize erosion. Applicable practices include, but are not limited to, reducing continuous length of slope with terracing and diversions, reducing slope steepness, and roughening slope surfaces (for example, track walking).
- Divert off-site stormwater (run-on) or ground water away from slopes and disturbed areas with interceptor dikes, pipes and/or swales. Off-site stormwater should be managed separately from stormwater generated on the site.
- At the top of slopes, collect drainage in pipe slope drains or protected channels to prevent erosion.
- Place excavated material on the uphill side of trenches, consistent with safety and space considerations.
- Place check dams at regular intervals within constructed channels that are cut down a slope.

Element 7: Protect Drain Inlets

- Protect all storm drain inlets made operable during construction so that stormwater runoff shall not enter the conveyance system without first being filtered or treated to remove sediment.
- Clean or remove and replace inlet protection devices when sediment has filled one-third of the available storage (unless a different standard is specified by the product manufacturer).

Element 8: Stabilize Channels and Outlets

- Design, construct, and stabilize all on-site conveyance channels.
- Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream reaches at the outlets of all conveyance systems.

Element 9: Control Pollutants

• Design, install, implement and maintain effective pollution prevention measures to minimize the discharge of pollutants.

- Handle and dispose of all pollutants, including waste materials and demolition debris that occur on-site in a manner that does not cause contamination of stormwater.
- Provide cover, containment, and protection from vandalism for all chemicals, liquid products, petroleum products, and other materials that have the potential to pose a threat to human health or the environment. On-site fueling tanks must include secondary containment. Secondary containment means placing tanks or containers within an impervious structure capable of containing 110% of the volume contained in the largest take within the containment structure. Double-walled tanks do not require additional secondary containment.
- Conduct maintenance, fueling, and repair of heavy equipment and vehicles using spill prevention and control measures. Clean contaminated surfaces immediately following any spill incident.
- Discharge wheel wash or tire bath wastewater to a separate on-site treatment system that prevents discharge to surface water, such as closed-loop recirculation or upland application, or to the sanitary sewer, with local sewer district approval.
- Apply fertilizers and pesticides in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Follow manufacturers' label requirements for application rates and procedures.
- Use BMPs to prevent contamination of stormwater runoff by pH modifying sources. The sources for this contamination include, but are not limited to: bulk cement, cement kiln dust, fly ash, new concrete washing and curing waters, waste streams generated from concrete grinding and sawing, exposed aggregate processes, dewatering concrete vaults, concrete pumping and mixer washout waters.
- Adjust the pH of stormwater if necessary to prevent violations of water quality standards.
- Assure that washout of concrete trucks is performed off-site or in designated concrete washout areas only. Do not wash out concrete trucks onto the ground, or into storm drains, open ditches, streets, or streams. Do not dump excess concrete on-site, except in designated concrete washout areas. Concrete spillage or concrete discharge to surface waters of the State is prohibited.
- Obtain written approval from Ecology before using chemical treatment other than CO2 or dry ice to adjust pH.

Element 10: Control De-Watering

- Discharge foundation, vault, and trench de-watering water, which has similar characteristics to stormwater runoff at the site, into a controlled conveyance system before discharge to a sediment trap or sediment pond.
- Discharge clean, non-turbid de-watering water, such as well-point ground water, to systems tributary to, or directly into surface waters of the State, as specified in Element #8, provided the de-watering flow does not cause erosion or flooding of receiving waters. Do not route clean dewatering water through stormwater sediment ponds. Note that "surface waters of the State" may exist on a construction site as well as off site; for example, a creek running through a site.
- Handle highly turbid or otherwise contaminated dewatering water separately from stormwater.
- Other treatment or disposal options may include:
 - 1. Infiltration.

- 2. Transport off-site in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute state waters.
- 3. Ecology-approved on-site chemical treatment or other suitable treatment technologies.
- 4. Sanitary or combined sewer discharge with local sewer district approval, if there is no other option.
- 5. Use of a sedimentation bag that discharges to a ditch or swale for small volumes of localized dewatering.

Element 11: Maintain BMPs

- Maintain and repair all temporary and permanent erosion and sediment control BMPs as needed to assure continued performance of their intended function in accordance with BMP specifications.
- Remove all temporary erosion and sediment control BMPs within 30 days after achieving final site stabilization or after the temporary BMPs are no longer needed.

Element 12: Manage the Project

- Phase development projects to the maximum degree practicable and consider seasonal work limitations.
- Inspection and monitoring Inspect, maintain and repair all BMPs as needed to assure continued performance of their intended function. Projects regulated under the Construction Stormwater General Permit must conduct site inspections and monitoring in accordance with Special Condition S4 of the Construction Stormwater General Permit.
- Maintaining an updated construction SWPPP Maintain, update, and implement the SWPPP.
- Projects that disturb one or more acres must have site inspections conducted by a Certified Erosion and Sediment Control Lead (CESCL). Project sites disturbing less than one acre may have a CESCL or a person without CESCL certification conduct inspections. By the initiation of construction, the SWPPP must identify the CESCL or inspector, who must be present onsite or on-call at all times.
- The CESCL or inspector (project sites less than one acre) must have the skills to assess the:
 - Site conditions and construction activities that could impact the quality of stormwater.
 - Effectiveness of erosion and sediment control measures used to control the quality of stormwater discharges.
- The CESCL or inspector must examine stormwater visually for the presence of suspended sediment, turbidity, discoloration, and oil sheen. They must evaluate the effectiveness of BMPs and determine if it is necessary to install, maintain, or repair BMPs to improve the quality of stormwater discharges.
- Based on the results of the inspection, construction site operators must correct the problems identified by:
 - Reviewing the SWPPP for compliance with the 13 construction SWPPP elements and making appropriate revisions within seven (7) calendar days of the inspection.
- Immediately beginning the process of fully implementing and maintaining appropriate source control and/or treatment BMPs as soon as possible, addressing the problems not

later than within 10 days of the inspection. If installation of necessary treatment BMPs is not feasible within 10 days, the construction site operator may request an extension within the initial 10day response period.

- Documenting BMP implementation and maintenance in the site log book (sites larger than 1 acre).
- The CESCL or inspector must inspect all areas disturbed by construction activities, all BMPs, and all stormwater discharge points at least once every calendar week and within 24 hours of any discharge from the site. (For purposes of this condition, individual discharge events that last more than one day do not require daily inspections. For example, if a stormwater pond discharges continuously over the course of a week, only one inspection is required that week.) The CESCL or inspector may reduce the inspection frequency for temporary stabilized, inactive sites to once every calendar month.

Element 13: Protect Low Impact Development BMPs

- Protect all Bioretention and Rain Garden BMPs from sedimentation through installation and maintenance of erosion and sediment control BMPs on portions of the site that drain into the Bioretention and/or Rain Garden BMPs. Restore the BMPs to their fully functioning condition if they accumulate sediment during construction. Restoring the BMP must include removal of sediment and any sediment-laden Bioretention/rain garden soils, and replacing the removed soils with soils meeting the design specification.
- Prevent compacting Bioretention and rain garden BMPs by excluding construction equipment and foot traffic. Protect completed lawn and landscaped areas from compaction due to construction equipment.
- Control erosion and avoid introducing sediment from surrounding land uses onto permeable pavements. Do not allow muddy construction equipment on the base material or pavement. Do not allow sediment-laden runoff onto permeable pavements or base materials.
- Pavement fouled with sediments or no longer passing an initial infiltration test must be cleaned using procedures in accordance with this manual or the manufacturer's procedures.
- Keep all heavy equipment off existing soils under LID facilities that have been excavated to final grade to retain the infiltration rate of the soils.

SECTION 7 – SPECIAL REPORTS AND STUDIES

A soils report from the NRCS USDA web soil survey website is included on the next pages. The information from this soil report was used to approximate subsurface site conditions and runoff potential. Soil characteristics were also directly evaluated through digging test pits and performing textural evaluation. Soils described in the USDA report are different than what was found in the field. Soils discussion can be found in both the Wetland and geotechnical reports included.

A wetland critical areas report is included as prepared by Loowit Consulting Group, Inc. This report scores and delineates the wetland area shown in the phase 2 area. As of the date this report was written a wetland bank use plan is still in progress. Once prepared it will be provided.

A geotechnical report is included as prepared by All American Geotechnical, Inc. The report concluded the site posed minimal to nonexistent landslide hazards.

A cultural resource study (archaeology) is being prepared by Drayton Archaeology Inc. This study is to be submitted in conjunction with the wetland bank use plan to the Army Corps of Engineers. This study report will be provided once complete.

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
89	Galvin silt loam, 0 to 8 percent slopes	4.1	72.2%
118	Lacamas silt loam, 0 to 3 percent slopes	0.1	1.5%
194	Scamman silty clay loam, 5 to 15 percent slopes	1.5	26.3%
Totals for Area of Interest		5.6	100.0%

Critical Areas Report for XXXX Jackson Hwy Chehalis, Washington

Prepared for: Lakewood Investors, LLC 12030 Sunrise Valley Dr, Suite 450 Reston, VA 20191

Project # 187.04

Prepared by: Loowit Consulting Group, LLC 312 Gray Road Castle Rock, WA 98611 360.431.5118

March 1, 2021

SIGNATURE PAGE
INTRODUCTION
Purpose and Need
Site Description
METHODS
Desktop Review
State Regulations
Federal Regulations
Local Regulations
Field Investigations
Vegetation
Soils
Hydrology
Mapping
RESULTS and DISCUSSION 8
Wetlands
Wetland Buffers
CONCLUSIONS
LIMITATIONS
REFERENCES
FIGURES
APPENDIX A - DATA FORMS 12
APPENDIX B - WETLAND RATING SUMMARY 13
APPENDIX C –CLIMATOLOGICAL DATA

Table of Contents

SIGNATURE PAGE

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned:

Timp) Hal

Timothy J. Haderly, Principal Scientist/Owner Loowit Consulting Group, LLC

INTRODUCTION

Purpose and Need

Loowit Consulting Group, LLC (LCG) was retained by Lakewood Investor, LLC (Applicant) to complete a critical areas investigation and report at XXXX Jackson Hwy (Subject Site) in Chehalis, Washington (Figure 1 & 2). The Applicant has proposed the construction of a phased multi-family residential facility including site access, street improvements, public supplied sewer/water, on-site parking, lighting and landscaping (Figure 3). Potential critical areas within the subject site prompted the City of Chehalis to request an evaluation of critical areas according to Chehalis Municipal Code (CMC) Title 17 – Division III.

Photograph 1: Subject site from Kennicott Road looking southeast.

Site Description

The subject site consists of a single parcel totaling approximately 4.32 acres of unimproved property. Site specifics include:

<u>Site Address</u> :	XXXX Jackson Hwy Chehalis, WA
<u>Current Owner</u> :	Lakewood Investors, LLC
Tax Parcel Number:	010799001000
Legal Description:	Section 3, Township 13 North, Range 2 West, W.M.
Property Size:	Approximately 4.32 acres
	2

Jurisdiction: City of Chehalis

The subject site is located southeast of Kennicott Road, northeast of Jackson Hwy, and southwest of Hosanna Ln in the southwestern portion of the City of Chehalis, Washington (Figure 1). The subject site consists of a sloped, unimproved property vegetated with a mix of pasture grass, teasel, thistles, and a few scattered willow clumps in the wetland area. There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property.

Land uses adjacent to the subject site include:

- To the South Residential and unimproved property
- To the North Residential
- To the West Residential and open space
- To the East Residential and open apace

METHODS

Desktop Review

Prior to visiting the subject site, LCG conducted a desktop review of readily available mapping resources and other pertinent information including:

- Lewis County Web Map (<u>http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm</u>). This source provided parcel information, aerial photographs, physical attributes, and other information from the Lewis County Assessor.
- US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (<u>https://www.fws.gov/wetlands/data/mapper.html</u>). This mapping source depicts wetlands and streams throughout the United States.
- US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>). This source depicts mapped soils including hydric soils throughout the United States.
- Washington Department of Natural Resources Forest Practices Application Mapping Tool (<u>https://fpamt.dnr.wa.gov/default.aspx</u>). This mapping source depicts streams and wetlands in Washington State.
- Washington Department of Fish and Wildlife Salmonscape

 (<u>http://apps.wdfw.wa.gov/salmonscape/map.html</u>). This mapping source depicts streams and fish distribution in Washington State.

 Washington Department of Fish and Wildlife Priority Habitat and Species (<u>http://apps.wdfw.wa.gov/phsontheweb/</u>). This mapping source depicts priority habitats and species throughout Washington State.

State Regulations

Wetlands are regulated by Washington Department of Ecology (Ecology) under the Water Pollution Control Act and the Shoreline Management Act. The State Environmental Policy Act (SEPA) process is also used to identify potential wetland-related concerns early in the permitting process. All proposed direct and identified indirect impacts to wetlands are reviewed and approved/denied by Ecology using the regulations previously listed.

Streams are regulated by Washington Department of Fish and Wildlife under the State Hydraulic Code, Chapter 77.55 Revised Code of Washington. Projects involving activities within, over, or beneath jurisdictional streams are subject to the Hydraulic Project Approval (HPA) permitting process administered by WDFW.

Federal Regulations

Wetlands are regulated as "waters of the United States" under Section 404 of the Clean Water Act. Section 404 regulations are administered by the US Army Corps of Engineers (USACE).

Local Regulations

Wetlands and other critical areas are regulated by Chehalis Municipal Code (CMC) Title 17 – Division III.

Field Investigations

On November 13, 2020, LCG visited the subject site to collect site information, delineate jurisdictional wetlands, and collect site data. Weather conditions at the time of the site investigation consisted of overcast skies with a high of 49.5°F and 0.01 inches of rain the previous 24 hours. Recorded climatological history from the Chehalis Airport two weeks prior to visiting the site was characterized with high temperatures ranging from 41.3 to 67.2°F and low temperatures ranging from 25.0 to 58.5°F. Total recorded precipitation two weeks prior to the site visit (October 30 – November 12) was recorded at 2.91 inches (Table 1, Appendix C).

Date	Minimum Temp (Deg F)	Maximum Temp (Deg F)	Total Precipitation (in)
10/30/2020	37.4	59.3	0.16
10/31/2020	32.9	59.3	0.01
11/1/2020	32.2	64.8	0
11/2/2020	31.0	67.2	0
11/3/2020	38.5	59.0	0.60
11/4/2020	58.5	64.0	0.33

Table 1: Weather Data a	t Chehalis Airport,	Washington.
-------------------------	---------------------	-------------

11/5/2020	46.2	59.8	0.78
11/6/2020	33.2	49.4	0.45
11/7/2020	30.3	42.2	0
11/8/2020	25.3	48.3	0
11/9/2020	25.0	41.3	0.13
11/10/2020	37.3	48.1	0.39
11/11/2020	34.2	42.2	0.05
11/12/2020	35.0	46.3	0.01
		Total:	2.91
11/13/2020	39.3	49.5	1.60

Data from Agweathernet

Site investigation work tasks included:

- Documentation of current site conditions
- Documentation of adjacent land uses
- Delineating and flagging of wetlands and streams
- Documentation of wetland/upland conditions with Test Plots

Wetlands were delineated according to methods outlined in the U.S. Army Corps of Engineers. 2010. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0)*. Data documenting vegetation, soils, and hydrology were collected and used to determine wetland and uplands at the site. A single depressional wetland (Wetland A) was located in the central portion of the subject site. Wetland boundaries were delineated using documented test plots and subsequently surveyed by Goodman Land Survey, Inc.

Vegetation

Upland vegetation at the site is a mix of grasses and weeds with a few scattered clumps of willow in the wetland area. On-site wetland areas are dominated by shore pine, reed canary grass and spiraea. Table 2 summarizes wetland and upland vegetation observed at the subject site.

Table 2: Vegetation Observed

Scientific Name	Common Name	Wetland Indicator Code
Cirsium arvense	Canada Thistle	FAC
Corylus cornuta	Beaked Hazelnut	FACU
Crataegus douglasii	Black Hawthorn	FAC
Cytisus scoparius	Scotch Broom	UPL
Dactylis glomerata	Orchard Grass	FACU
Daucus carota	Queen Anne's Lace	FACU

Dipsacus fullonum	Teasel	FAC
Fraxinus latifolia	Oregon Ash	FACW
Juncus effusus	Softrush	FACW
Phalaris arundinacea	Reed Canary Grass	FACW
Poa pratensis	Kentucky Bluegrass	FAC
Pseudotsuga menziesii	Douglas Fir	FACU
Rubus armeniacus	Himalayan Blackberry	FAC
Salix lasiandra	Pacific Willow	FACW
Schedonorus arundinaceus	Tall Fescue	FAC

Wetland Indicator Code

OBL = Obligate (>99% found in wetlands) FACW = Facultative Wetland (>67% to 99% found in wetlands)

FAC = Facultative (33% to 67% found in wetlands)

FACU = Facultative Upland (1% to <33% found in wetlands)

UPL = Obligate Upland (<1% found in wetlands)

Soils

According to the US Department of Agriculture Natural Resources Conservation Service (NRCS) Web Soil Survey for Lewis County, soils at the site are mapped as summarized in Table 3 and Figure 4).

Table 3: Soil Summary.

Soil #	Soil Name	Slope %	Hydric %
89	Galvin silt loam	0-8	15
118	Lacamas silt loam	0-3	97
194	Scamman silty clay loam	5-15	95

Historic land disturbance activities including fill placement, timber harvest, agricultural practices, and general grading may have altered natural soil conditions at the site resulting in soils that may be somewhat different than those mapped by NRCS.

Hydrology

The subject site generally slopes to the southwest into a slope wetland area in the southwestern portion of the subject site. Seasonal water drains from the wetland into a culvert beneath Jackson Hwy eventually draining into Dillenbaugh Creek, a tributary of the Chehalis River. Figure 6 depicts mapped streams to the north and south of the subject but nothing within adjacent to the subject site.

Mapping

Wetland boundary flagging, roads, property boundaries, topography, and other site features were derived from public mapping sources. Wetland flagging, topography, and property

boundaries were surveyed by Goodman Land Surveying, Inc. with additional points mapped with handheld portable GPS equipment with an implied horizontal accuracy of ± 11 feet.

RESULTS and DISCUSSION

Wetlands

A single slope wetland (Wetland A) was located in the central/southern portion of the subject site ending at the vertical embankment comprising Jackson Hwy (Figure 3). Wetland A is rated a Category III wetland (13 points) with a moderate water quality score of 7 points, a moderate hydrologic score of 5 points, and a moderate habitat score of 5 points (Table 4) according to the *Washington State Wetland Rating System for Western Washington, 2014 Update* (Appendix B).

Wetland Buffers

According to *CMC 17.23.030*, City of Chehalis requires buffers on jurisdictional wetlands depending on category and habitat score. A Category III wetland with a habitat score of 5 points (20 points under the old system) requires a 100-foot wide buffer. Table 4 summarizes wetland buffer requirements at the subject site based on *CMC 17.23.030*:

		Wetland Rating System ^B					Standard
Wetland ID HGM	HGM ^A	Improving Water Quality	Hydrologic	Habitat	Total	Category ^B	Standard Buffer ^c (ft)
Wetland A	Slope	7	5	5	17	III	100

Table 4: Wetland Summary.

^A Hydrogeomorphic Classification

^B Washington State Wetland Rating System for Western Washington: 2014 Update

C CMC 17.23.030

CONCLUSIONS

A single Category III slope wetland (Wetland A) is located within the south-central portion of the subject site and drains into a culvert beneath Jackson Hwy (Figure 3). The City of Chehalis requires a 100-foot wide buffer on Category III wetlands with a moderate habitat score. As currently designed, Phase 1 of the proposed project is located outside of wetlands. The applicant has chosen to apply to fill the on-site wetland and mitigate using credits purchased from the Chehalis Basin Wetland Mitigation Bank. Phase II will be implemented after wetland impact permits are obtained from City of Chehalis, Washington Department of Ecology, and US Army Corps of Engineers.

LIMITATIONS

The findings and conclusions contained in this document were based on information and data available at the time this document was prepared and evaluated using standard Best Professional Judgment. LCG assumes no responsibility for the accuracy of information and data generated by others. Local, State, and Federal regulatory agencies may or may not agree with the findings and conclusions contained in this document.

REFERENCES

Anderson, P., Meyer, S., Olson, P., Stockdale, E. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Shorelands and Environmental Assistance Program Washington State Department of Ecology Olympia, Washington. Publication no. 16-06-029. October 2016 Final Review.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station. Technical Report Y-87-1. January 1987.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. (Publication #14-06-029). Olympia, WA: Washington Department of Ecology.

Lewis County Web Map (http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm).

U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>).

US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (<u>https://www.fws.gov/wetlands/data/mapper.html</u>).

Washington Department of Natural Resources Forest Practices Application Mapping Tool (<u>https://fpamt.dnr.wa.gov/default.aspx</u>).

Washington Department of Fish and Wildlife Salmonscape (<u>http://apps.wdfw.wa.gov/salmonscape/map.html</u>).

Washington Department of Fish and Wildlife Priority Habitat and Species (<u>http://apps.wdfw.wa.gov/phsontheweb/</u>).

FIGURES

Figure 1 – Site Location Map Figure 2 – Parcel Map Figure 3 - Site Map Figure 4 – Soils Map Figure 5 - National Wetlands inventory Map Figure 6 – Stream Map

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure 1 Site Location Map Jackson Villa #4

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure 2 Parcel Map Jackson Villa #4

TESC NOTES:

- $\langle T1 \rangle$ INSTALL SILT FENCE. SEE DETAIL 3–4 SHEET C1.2.
- $\langle T2 \rangle$ INSTALL 100' LONG CONSTRUCTION ENTRANCE. SEE DETAIL 3-2 SHEET C1.2.
- $\overline{(T3)}$ INSTALL INLET PROTECTION TO EX CATCH BASIN. SEE DETAIL 3–5 SHEET C1.2.
- T4 INSTALL STRAW BALE BARRIER AS SHOWN AND IN ACCORDANCE WITH DETAIL 3-6 ON SHEET C1.2. BALES TO BE INSTALLED ALONG EXISTING DITCH SHOWN ON THIS SHEET. BALES WILL BE REMOVED ONCE SITE IS STABILIZED.
- $\langle T5 \rangle$ INSTALL TWO LAYERS OF WATTLES AND A SWATH OF SILT FENCE AROUND THE INLET FOR CULVERT INLET PROTECTION.

DEMOLITION NOTES:

- $\langle D1 \rangle$ EX. FENCE TO BE REMOVED.
- $\langle D2 \rangle$ EX. STRUCTURE TO BE REMOVED.
- $\langle D3 \rangle$ EX. TREE TO BE REMOVED.

NOTES TO CONTRACTOR:

- 1. ALL EXPOSED SOIL SURFACES SHALL BE SEEDED WITH AN EROSION CONTROL SEED MIX OR HYDROSEEDED IF NOT WORKED WITHIN 7 CALENDAR DAYS FROM MAY 1 TO SEPTEMBER 30. SOIL SHALL BE COVERED WITHIN 2 DAYS FROM OCTOBER 1 TO APRIL 30.
- 2. SEEDED AREAS WILL BE COVERED WITH MULCH, HAY OR OTHER PROTECTIVE COVERING APPROVED BY THE ENGINEER TO PREVENT WASHOUT DURING RAIN EVENTS.
- 3. CONTRACTOR SHALL APPLY WATER TO GRAVEL SURFACES DURING CONSTRUCTION TO MINIMIZE FUGITIVE DUST.
- 4. ROUTINE INSPECTION AND MAINTENANCE OF ALL INSTALLED EROSION AND SEDIMENT CONTROL BMPS, ESPECIALLY AFTER STORMS, IS REQUIRED. 5. PERIODIC STREET CLEANING MAY BE NECESSARY TO REMOVE
- ANY SEDIMENT TRACKED OFF THE SITE. 6. IN THE EVENT PROPOSED BMPS FAIL, APPROPRIATE
- MEASURES MUST BE TAKEN TO STOP SEDIMENTS FROM ENTERING WATERWAYS. 7. NO CONSTRUCTION OR DEMOLITION WILL BE ALLOWED IN PHASE 2 AREA UNTIL STATE AUTHORIZATION.

LINE TABLE				
Line #	Bearing	Length		
L1	S49°58'51.00"W	472.03		
L2	N40°01'09.00"W	10.00		
L3	S49° 58' 51.00"W	145.84		
L4	N42°17'06.00"W	272.52		
L5	N47°40'14.69"E	543.52		
L6	N37°13′46.00"W	154.81		
L7	N48° 33' 44.00"E	171.73		
L8	S35° 44' 51.00"E	168.43		

CURVE TABLE			
Curve #	Radius	Length	
C1	161.44	68.03	

DESIGNS

8531

6

МA

AVE

Figure 3 - Site Map

FOR PERMIT ONLY

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
89	Galvin silt loam, 0 to 8 percent slopes	3.5	77.5%	
118	Lacamas silt loam, 0 to 3 percent slopes	0.0	0.5%	
194	Scamman silty clay loam, 5 to 15 percent slopes	1.0	22.0%	
Totals for Area of Interest		4.5	100.0%	

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure 4 Soils Map Jackson Villa #4

APPENDIX A - DATA FORMS
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	ounty: <u>Chehal</u>	is/LewisSampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: <u>TP-1</u>
Investigator(s): T. Haderly		Sectio	on, Township	o, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): <u>0-3%</u>
Subregion (LRR): A	Lat: <u>46.64</u> 1	1101	_ Long: <u>-122.</u>	927069 Datum: WGS84
Soil Map Unit Name: <u>#89 Galvin silt loam</u>		-	N	IWI classification: PEM1A
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No∐ (If	no, explain Remarks.)
Are Vegetation , Soil , or Hydrology significantly	y disturbed?	Ar	rea "Normal (Circumstances" present? Yes 🖄 No
Are Vegetation [], Soil [], or Hydrology [] naturally p	roblematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing s	sampling po	oint locatio	ons, transects, important features, etc.
Hydrophytic Vegetation Present? Yes 🛛 No [
Hydric Soils Present? Yes 🛛 No [Is the Sa	mpled Area	
Wetland Hydrology Present? Yes 🛛 No [within a	welland?	
Remarks:				
VEGETATION (Use scientific names)				1
Trop Stratum (Diat size 20 ft radius)	Absolute	Dominant	Indicator	Dominance Test Worksheet
	-70 Cover	opecies?	Status	Number of Dominant Species
1.	<u> </u>	·		That Are OBL EACW or EAC: (A)
2.	<u> </u>			
3.	<u> </u>			Total Number of Dominant
4Tatal Coveri				Species Across All Strata:
	<u> </u>			100 (A/P)
<u>Sapling/Shrub Stratum</u> (Plot size: <u>5 f</u> t. radius)				Percent of Dominant Species (A/B) That Are OBL, FACW, or FAC
1	%			Prevalence Index worksheet
2	%			Total % Cover of: Multiply by:
3	%			OBL species 0 x 1= 0
4	%			FACW species0 x 2=0
5	<u>%</u>			FAC species $0 \times 3 = 0$
I otal Cover:	%			FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: <u>5</u> ft radius)	10001			UPL species $0 \times 5 = 0$
1. Phalaris arundinacea	100%	yes	FACW	Column Totals: 0 (A) 0 (B)
2.	%			Prevalence Index = B/A=
3	%			Hydrophytic Vegetation Indicators:
4.	%			☐ 1 – Rapid Test for Hydrophytic Vegetation
				\square
5	%			3 - Prevalence Index is $\leq 3.0^{\circ}$
6.	%			4 - Morphological Adaptations ¹ (Provide supporting data In Remarks or on a separate sheet)
· /.	<u>%</u>			
8	<u>%</u>			Wetland Non-Vascular Plants'
Total Cover:	100%			Problematic Hydrophytic Vegetation (Explain)
	0/			Indicators of hydric soil and watland hydrolery
1	<u> </u>			Must be present, upless disturbed or problematic
Z	<u> </u>			iniust de present, uniess disturbed or proplematic.
Total Cover:	%			
% Bare Ground in Herb Stratum <u>0%</u>				Hydrophytic Vegetation Present? Yes⊠ No⊡
Remarks:				

SOIL

Profile Description: (Describe to the dept	h needed to document	the indicator or confirm	m the absence	e of indicators.)	
Depth Matrix	Red	ox Features			
(inches) Color (moist) %	Color (moist)	% Type ¹ L	_OC ²	Texture	Remarks
0-18 10YR3/3 80%	7.5YR4/4 2	20% D	М	Silt Loam	
<u>%</u>		<u>%</u>			
<u> </u>		<u>%</u>			
<u></u>		<u></u>			
<u> </u>		<u>%</u>			
<u> </u>		%			
<u>%</u>		%			
¹ Type: C=Concentration, D=Depletion, RM	1=Reduced Matrix, CS=0	Covered or Coated Sand	Grains. ² Loca	ation: PL=Pore Lining,	M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless otherwise	e noted.)	Indicat	tors for Problematic I	lydric Soils
Listosal (A1)	Sandy Redox (S5)			MUCK (A10)	
				Shallow Dark Surface	(TF12)
☐ Black Histic (A3)	Loamy Mucky Miner	al (F1) (except MLRA 1)	er (Explain in Remarks)	(
Hydrogen Sulfide (A4)	Loamy Gleved Matri	x (F2)	, _	· · · · /	
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)			
Thick Dark Surface (A12)	Redox Dark Surface	e (F6)			
Sandy Mucky Minerals (S1)	Depleted Dark Surfa	nce (F7)	³ Indicato	ors of hydrophytic vege	tation and
Sandy Gleyed Matrix (S4)	Redox Depressions	(F8)	Wet	land hydrology must be	present
Restrictive Layer (if present):	-			, , ,	•
Туре:			Hydric Soil	Present?	
Depth (inches):					Yes NO
Bemarke:					
Remarks.					
					,
HYDROLOGY					
Wetland Hydrology Indicators:				Secondary Indicators	
Drimony Indiantors (min. of one required; ch	alk all that apply)			(2 or more required)	
	eck all that apply)			Water Stained Leav	(oc (P0)
Surface Water (A1)	□ Water-Stained Leav	es (B9) (excent MI RA 1	1 2 44 & 4B)		d 4 B)
\square High Water Table (A2)	Salt Crust (B11)		., _, ., ., ., ., .,	Drainage Patterns	B10)
\boxtimes Saturation (A3)	Aquatic Invertebrate	s (B13)		Dry-Season Water	Table (C2)
□ Water Marks (B1)	Hydrogen Sulfide O	dor (C1)		Saturation Visible o	n Aerial Imagery (C9)
Sediment Deposits (B2)	Oxidized Rhizosphe	res along Living Roots (C3)	Geomorphic Positio	on (D2)
Drift Deposits (B3)	Presence of Reduce	ed Iron (C4)	,	☐ Shallow Aquitard (□)3)
☐ Algal Mat or crust (B4)	Recent Iron Reducti	on in Tilled Soils (C6)		FAC-Neutral Test (D5)
☐ Iron Deposits (B5)	Stunted or Stressed	Plants (D1) (LRR A)		Raised Ant Mounds	(D6) (LRR A)
Surface Soil Cracks (B6)	Other (Explain in Rei	marks)		Frost-Heave Humm	ocks (D4)
☐ Inundation Visible on Aerial Imagery (B7)				
			I		
Field Observations:		(abaa); 1.0			
Water Table Present? Yes X	No Depth (Ir	icnes): <u>1-2</u>	Wotland Hy	drology Procont?	
Saturation Present? Yes X	No Depth (Ir	iches): <u>o</u> iches): surface		urology Fresent?	Yes 🕅 No 🗌
(Includes Capillary fringe)		<u>oundoo</u>			
Describe Recorded Data (Stream gauge, mo	onitoring well, aerial phot	os, previous inspections), if available:		
	- '				

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	ounty: Chehal	is/Lewis Sampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-2
Investigator(s): T. Haderly		Sectio	on, Township	, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): 0-3%
Subregion (LRR): A	Lat: 46.641	73	Long:-122.	926865 Datum: WGS84
Soil Map Unit Name: #89 Galvin silt loam			N	IWI classification: none
Are climatic / hydrologic conditions on the site typical	for this time of	year? Yes⊠	No (If	no, explain Remarks.)
Are Vegetation, Soil, or Hydrology significant	ly disturbed?	Ar	ea "Normal (Circumstances" present? Yes 🛛 No
Are Vegetation, Soil, or Hydrology naturally p	problematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site mar	o showina s	ampling po	oint locatio	ons, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No				
Hydric Soils Present? Yes I No	\square	Is the Sa	mpled Area	
Wetland Hydrology Present? Yes		within a	Wetland?	Yes∐ No⊠
Remarks				
	Absolute	Dominant	Indicator	Dominance Test Worksheet
<u>Tree Stratum</u> (Plot size: <u>30</u> ft radius)	% Cover	Species?	Status	
1	%	. <u></u>		Number of Dominant Species <u>1</u> (A)
2	%			That Are OBL, FACW, or FAC:
3	%			Tatal Number of Daminant
4	%			Total Number of Dominant (B)
Total Cover:	%			Species Across All Strata:
				Percent of Dominant Species100 (A/B)
Sanling/Shrub Stratum (Plot size: 5 ft. radius)				That Are OBLEACW or EAC
<u>Saping/Shiub Stratum</u> (Flot size, <u>5</u> it. Taulus)	0/			Provalence Index werksheet
1	<u> </u>			Total % Cover of: Multiply by:
2.				$\frac{1}{10000000000000000000000000000000000$
л	<u> </u>			ODL species 0 x 1 = 0
5	0/			$\frac{1}{1} = \frac{1}{1} = \frac{1}$
o	<u> </u>			$\frac{1}{1} = \frac{1}{1} = \frac{1}$
Herb Stratum (Plot size: 5 ft radius)	70			$\frac{1}{1} \text{Pl species} \qquad 0 \qquad x = 0$
1 Dissous fullonum	00%	VOC	FAC	$\begin{array}{c} \text{OFL species} \\ \text{Column Totals} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{(A)} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{(B)} \\ \end{array} \end{array}$
1. Dipsacus fullonum	10%	yes	FAC	$\frac{1}{2} \frac{1}{2} \frac{1}$
2. Schedoholds alundinaceds	10%			Hudrophytic Vegetation Indicators:
	10%	10	FAC	1 Parid Test for Hydrophytic Vegetation
4.	%			\square 1 – Rapid Test for Hydrophylic Vegetation \square 2 – Dominance Test is >50%
5	0/_			\square 3 - Prevalence Index is <3.0 ¹
6	/0			4 - Morphological Adaptations1 (Provide
v.	%			supporting data in Remarks or on a separate sheet)
7	0/2			
8	0/_			Wetland Non-Vascular Plants ¹
o	110%			$\square Problematic Hydrophytic Vegetation1 (Evaluation)$
Woody Vine Stratum (Plot size: 30 ft radius)	11070			
1.	%			¹ Indicators of hydric soil and wetland hydrology
2.	%			Must be present, unless disturbed or problematic
	%			
I otal Cover:				Undrankstia Varatatian Drazanto
% Bare Ground in Herb Stratum 0%				
remarks:				

SOIL

Profile Description: (Describe to the dep	th needed to docu	ment the ind	cator or confi	rm the a	absence of indicators.)	· ×
Depth Matrix		Redox Feat	ires			
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-18 10YR5/3 100%		%			Silt Loam	
<u> </u>		<u>%</u>	<u> </u>			
		<u> % </u>				
· · · · · · · · · ·		<u> </u>				
<u> </u>		<u> </u>			·	
%		%				
<u> </u>		%				
¹ Type: C=Concentration, D=Depletion, RI	M=Reduced Matrix,	CS=Covered	or Coated San	d Grains	s. ² Location: PL=Pore Linir	ig, M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless othe	rwise noted.)		Indicators for Problemati	c Hydric Soils
Histosal (A1)	Sandy Redox ((SS)			☐ 2 cm Muck (A10) ☐ Bod Derent Meterial (TE	2)
		(30)			Verv Shallow Dark Surfa	∠) ce (TF12)
☐ Black Histic (A3)	C Loamy Mucky I	Mineral (F1) (except MLRA	1)	Other (Explain in Remark	(s)
Hydrogen Sulfide (A4)	Loamy Gleved	Matrix (F2)	•	,		,
Depleted Below Dark Surface (A11)	Depleted Matri	x (F3)				
Thick Dark Surface (A12)	Redox Dark Su	urface (F6)				
Sandy Mucky Minerals (S1)	Depleted Dark	Surface (F7)		:	³ Indicators of hydrophytic ve	getation and
Sandy Gleyed Matrix (S4)	Redox Depress	sions (F8)			Wetland hydrology must	be present
Restrictive Layer (if present):						
Times					Inia Call Decamto	
Type:				Нус	iric Soli Present?	
Depth (inches):						
Remarks:						
						<u>.</u>
HIDROLOGI						
Wetland Hydrology Indicators:					Secondary Indicator	S
Primary Indicators (min. of one required: ch	eck all that apply)					·
					 ☐ Water Stained Le	eaves (B9)
Surface Water (A1)	Water-Stained	Leaves (B9)	except MLRA	1, 2, 4A	A, & 4B) (MLRA 1, 2, 4A,	and 4B)
High Water Table (A2)	Salt Crust (B11)			Drainage Patterr	is (B10)
Saturation (A3)	Aquatic Inverte	brates (B13)			🗌 Dry-Season Wat	er Table (C2)
🔲 Water Marks (B1)	Hydrogen Sulfi	de Odor (C1)			Saturation Visible	e on Aerial Imagery (C9)
Sediment Deposits (B2)	Oxidized Rhizo	spheres alon	g Living Roots	(C3)	Geomorphic Pos	ition (D2)
Drift Deposits (B3)	Presence of Re	educed Iron (C4)		Shallow Aquitarc	(D3)
☐ Algal Mat or crust (B4)	Recent Iron Re	duction in Til	ed Soils (C6)		FAC-Neutral Tes	it (D5)
Iron Deposits (B5)	Stunted or Stre	essed Plants (D1) (LRR A)		Raised Ant Mour	nds (D6) (LRR A)
Surface Soil Cracks (B6)	☐Other (Explain i	n Remarks)			Frost-Heave Hur	nmocks (D4)
☐ Inundation Visible on Aerial Imagery (B7	<i>`</i>)					
Field Observations:						
Surface Water Present? Yes	No 🛛 🛛 Der	oth (Inches) [.]				
Water Table Present? Yes		oth (Inches):		Wetl	and Hydrology Present?	
Saturation Present? Yes	No 🛛 Dep	oth (Inches):				Yes 🗌 No 🖂
(Includes Capillary fringe)						
Describe Recorded Data (Stream gauge, m	onitoring well, aeria	l photos, prev	ious inspection	is), if ava	ailable:	
Remarks:						

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: <u>Chehal</u>	is/LewisSampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-3
Investigator(s): T. Haderly		Sectio	on, Township	o, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): <u>0-3%</u>
Subregion (LRR):A	Lat: 46.609	926	_Long: <u>-122.</u>	.927337 Datum: WGS84
Soil Map Unit Name: #89 Galvin silt loam			N	IWI classification: PEM1A
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No (If	no, explain Remarks.)
Are Vegetation, Soil, or Hydrology significantly	/ disturbed?	Ar	ea "Normal (Circumstances" present? Yes⊠ No⊡
Are Vegetation, Soil, or Hydrology naturally pr	oblematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing s	ampling po	int locatio	ons, transects, important features, etc.
	¬			
Hydrophylic Vegetation Present? Yes 🖾 No		Is the Sa	mpled Area	
Hydric Solis Fresent? Yes No L		within a	Wetland?	Yes⊠ No⊡
VEGETATION (Use scientific names)	Absolute	Dominant	Indicator	Dominance Test Worksheet
Tree Stratum (Plot size 30 ft radius)	% Cover	Species?	Statue	
	70 COVEI	Opecies :	Status	Number of Dominant Species 2 (A)
1.	70			That Are OBL_EACW_or EAC: (A)
2.	%			
3.	<u>%</u>			Total Number of Dominant
4	<u>%</u>			Species Across All Strata:
I otal Cover:	%			
				Percent of Dominant Species <u>100</u> (A/B)
Sapling/Shrub Stratum (Plot size: 5 ft_radius)				That Are OBL_FACW_or FAC
1 Salix lasiandra	10%	Ves	FACW	Prevalence Index worksheet
2	<u> </u>	yes	17.00	Total % Cover of Multiply by
3	%			$\frac{\text{OBL species}}{\text{OBL species}} = 0 \qquad \text{x 1=} 0$
л	<u> </u>			$\frac{1}{1} = \frac{1}{1} = \frac{1}$
				$1 \text{ACW species} = 0 \text{ x} 2^2 = 0$
J	10%			$1 \text{AC species} \qquad 0 \qquad x $
Herb Stretum (Diet eize: 5 ft rediue)	10 %			$\frac{1}{10}$
<u>Herb Stratum</u> (Plot size, <u>5</u> it radius)	1000/			$\begin{array}{c c} OPL \text{ species} & \underline{0} & \underline{x} \text{ 5-} & \underline{0} \\ Calumn Tatalac & \underline{0} & (A) & \underline{0} & (B) \end{array}$
	100%	yes	FACW	Column Totals: U (A) U (B)
2.	%			Prevalence Index = B/A=
3.	%			Hydrophytic Vegetation Indicators:
4.	%			1 – Rapid Test for Hydrophytic Vegetation
	,,,			≥ 2 – Dominance Test is >50%
5	%			\square 3 - Prevalence Index is $\leq 3.0^1$
6.	%			4 - Morphological Adaptations ¹ (Provide
	70			supporting data In Remarks or on a separate sheet)
7	%			
8	%			Wetland Non-Vascular Plants ¹
Total Cover:	100%			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: <u>30</u> ft radius)				
1	%			¹ Indicators of hydric soil and wetland hydrology
2.	%			Must be present, unless disturbed or problematic.
Total Cover:	%			
				Hydrophytic Vegetation Present?
% Bare Ground in Herb Stratum 0%				Yes⊠ No⊡
Remarks:				

SOIL

Profile Description: (Describe to the dep	th needed to docun	nent the ind	icator or confi	rm the a	absence of indicators.)	
Depth Matrix		Redox Featu	ires			
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
<u>0-18 10YR3/3 80%</u>	7.5YR4/4	20%	D	М	Silt Loam	
<u> </u>						
<u> </u>		<u> % </u>				
<u></u>		<u>%</u>				
<u>%</u>		%	<u> </u>			
<u> </u>		%				
<u>%</u>		%				
¹ Type: C=Concentration, D=Depletion, RM	/I=Reduced Matrix, C	CS=Covered	or Coated Sand	d Grains	 ²Location: PL=Pore Linir 	ng, M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless other	wise noted.)		Indicators for Problemati	ic Hydric Soils
Li Histosal (A1)	Sandy Redox (55) (S6)			☐ 2 cm Muck (A10) ☐ Red Perent Meterial (TE	0)
		(30)			Verv Shallow Dark Surfa	2) ce (TF12)
☐ Black Histic (A3)	Loamy Mucky N	/lineral (F1) (except MLRA	1)	Other (Explain in Remar	ks)
Hydrogen Sulfide (A4)	Loamy Gleved I	Matrix (F2)	•	,		,
Depleted Below Dark Surface (A11)	Depleted Matrix	(F3)				
Thick Dark Surface (A12)	Redox Dark Su	rface (F6)				
Sandy Mucky Minerals (S1)	Depleted Dark	Surface (F7)		3	³ Indicators of hydrophytic ve	egetation and
Sandy Gleyed Matrix (S4)	Redox Depress	ions (F8)			Wetland hydrology must	t be present
Restrictive Layer (if present):		i			, , ,	· ·
Туре:				Hyd	ric Soil Present?	
Depth (inches):						Yesk No
Bemarks:						
Komano.						
HYDROLOGY						
Wetland Hydrology Indicators:					Secondary Indicator	rs
Primary Indicators (min. of one required: ch	eck all that apply)				(2 or more required))
	con an that apply/				Water Stained L	eaves (B9)
Surface Water (A1)	Water-Stained I	_eaves (B9)	except MLRA	1, 2, 4A	(MLRA 1, 2, 4A,	and 4B)
High Water Table (A2)	Salt Crust (B11)	•		Drainage Patterr	ns (B10)
Saturation (A3)	Aquatic Invertel	orates (B13)			Dry-Season Wat	er Table (C2)
🔲 Water Marks (B1)	Hydrogen Sulfic	le Odor (C1)			Saturation Visibl	e on Aerial Imagery (C9)
Sediment Deposits (B2)	Oxidized Rhizos	spheres alon	g Living Roots	(C3)	Geomorphic Pos	sition (D2)
Drift Deposits (B3)	Presence of Re	duced Iron (C4)		Shallow Aquitare	l (D3)
🔲 Algal Mat or crust (B4)	Recent Iron Re	duction in Til	ed Soils (C6)		FAC-Neutral Tes	st (D5)
🔲 Iron Deposits (B5)	Stunted or Stree	ssed Plants (D1) (LRR A)		🗌 Raised Ant Mou	nds (D6) (LRR A)
Surface Soil Cracks (B6)	☐Other (Explain ir	n Remarks)			Frost-Heave Hur	mmocks (D4)
Inundation Visible on Aerial Imagery (B7)					
Field Observations:				1		
Surface Water Present? Ves 🕅		th (Inches).	1_2			
Water Table Present? Yes		th (Inches):	<u>1-2</u> 6	Wetl	and Hydrology Present?	
Saturation Present? Yes		th (Inches):	<u>s</u> urface			Yes 🖂 No 🗌
(Includes Capillary fringe)		()				
Describe Recorded Data (Stream gauge, m	onitoring well, aerial	photos, prev	ious inspection	s), if ava	ailable:	
Remarks:						

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: Chehal	is/Lewis Sampling Date: 11/13/2020	
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-4	
Investigator(s): T. Haderly		Sectio	on, Township	o, Range: <u>Section 3, Township 13 North, Range</u>	2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): <u>0-3%</u>
Subregion (LRR): <u>A</u>	Lat: 46.640)792	_Long: <u>-122</u>	927243 Datum: WGS84	
Soil Map Unit Name: <u>#89 Galvin silt loam</u>			N	IWI classification: <u>none</u>	
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No🗌 (If	no, explain Remarks.)	
Are Vegetation, Soil, or Hydrology significantly	y disturbed?	Ar	ea "Normal	Circumstances" present? Yes 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology naturally pl	oblematic?	(If need	led, explain a	any answers in Remarks.)	
SUMMARY OF FINDINGS – Attach site map	showing s	ampling po	oint locatio	ons, transects, important features, etc.	
Hydrophytic Vegetation Present? Veg M No	3 -			-, · · · · · · · · · · · · · · · · · · ·	
Hydrophylic Vegetallon Fresent? Yes No L		Is the Sa	mpled Area		
Wetland Hydrology Dropont2 Veg Veg	N 7	within a	Wetland?	Yes⊡ No⊠	
Remarks:					
l					
VEGETATION (Use scientific names)					
· · · ·	Absolute	Dominant	Indicator	Dominance Test Workshoot]
Trop Stratum (Plot size:20 ft radius)		Species?	Statuc	Dominance rest worksheet	
		Species	Status	Number of Dominant Species	(4)
1.	<u> </u>			That Are OBL_EACW_or EAC:	(A)
2.	<u>%</u>				
3.	<u>%</u>			Total Number of Dominant	
4.	<u>%</u>			Species Across All Strata	(B)
I otal Cover:	%				
				Percent of Dominant Species 100	(A/B)
Sapling/Shrub Stratum (Plot size: 5 ft_radius)				That Are OBL FACW or FAC	
1	%			Prevalence Index worksheet	
2	%			Total % Cover of Multiply b	w.
3	%			OBL species 0 x 1=	0
<u> </u>	%			EACW species 0 x 2=	0
5	<u> %</u>			FAC species 0 x 3=	0
Total Cover:	<u> </u>			$\frac{1}{1} = \frac{1}{1} = \frac{1}$	0
Herb Stratum (Plot size: 5 ft radius)	70				0
1 Schodonorus arundinacous	70%	VOS	FAC	$\begin{array}{c} 0 \\ \text{Column Totals:} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 (B)
2 Poo protonoio	20%	<u>yes</u>	FAC		0 (В)
	20%	110	FAC	Prevalence index – D/A–	
	20%	<u> </u>	FAC	Hydrophytic vegetation indicators:	
^{4.} Dipsacus fullonum	10%	no	FAC	I – Rapid Test for Hydrophylic Vegetalic	חכ
F	0/			\square 2 – Dominance Test is >50%	
0	%			J - Flevalence index is ≤3.0'	
υ.	%			4 - Information data in Demarka an array	oroto chast
7	0/				arate sheet)
1	<u> </u>				
0	<u>%</u>				(mlair)
I otal Cover:	120%			Problematic Hydrophytic Vegetation' (E)	(piain)
voody vine Stratum (Plot size: 30 ft radius)	0/				
1	<u>%</u>			Indicators of hydric soil and wetland hydrolog	y
۷	%			IVIUST DE PRESENT, UNIESS DISTURDED OF PROBLEMA	auc.
Total Cover:	%				
				Hydrophytic Vegetation Present?	
% Bare Ground in Herb Stratum 0%				Yes	
Remarks:					
nonuno.					

SOIL

	th needed to document the		m the absend	e of Indicators.)	
Depth Matrix	Redox	Features			
(inches) Color (moist) %	Color (moist) %	Type ¹ I	LOC ²	Texture	Remarks
<u>0-18</u> 10YR5/3 100%		%		Silt Loam	
		<u>%</u>			
<u> </u>		<u>%</u>	·		
	·	<u>%</u>			
<u> </u>		%			
<u>%</u>		%			
%		%			
¹ Type: C=Concentration, D=Depletion, R	/I=Reduced Matrix, CS=Cov	rered or Coated Sand	Grains. ² Loc	ation: PL=Pore Linin	g, M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless otherwise n	oted.)		tors for Problemation	: Hydric Soils
Histosal (A1)	Sandy Redox (S5)			n Muck (A10) Derent Meterial (TE2	N
				Shallow Dark Surface	. <i>)</i> ce (TF12)
☐ Black Histic (A3)	Loamy Mucky Mineral	(F1) (except MLRA 1) 🗌 Othe	er (Explain in Remark	s)
Hydrogen Sulfide (A4)	Loamy Gleved Matrix (F2)	, _		,
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	,			
Thick Dark Surface (A12)	Redox Dark Surface (F	6)			
Sandy Mucky Minerals (S1)	Depleted Dark Surface	(F7)	³ Indicat	tors of hvdrophvtic ve	detation and
Sandy Gleyed Matrix (S4)	Redox Depressions (F	B)	We	tland hvdrology must	be present
Restrictive Layer (if present):		· ·		, ,,	
Туре:			Hydric Soi	il Present?	
Depth (inches):					Yes NOK
Bemarka:					
Itemarks.					
HYDROLOGY					
Wetland Hydrology Indicators:				Secondary Indicator	S
Primary Indicators (min. of one required: ch	eck all that apply)			(2 or more required)	
	sok all that apply)				aves (RQ)
Surface Water (A1)	Water-Stained Leaves	(B9) (except MLRA	1. 2. 4A. & 4B	(MLRA 1. 2. 4A.	
High Water Table (A2)	Salt Crust (B11)	() (-, _,,	Drainage Pattern	and 4B)
Saturation (A3)					and 4B) s (B10)
		B13)		Dry-Season Wate	and 4B) s (B10) er Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor	B13) (C1)		Dry-Season Wate	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9)
Sediment Deposits (B2)	 Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres 	B13) [·] (C1) ⊱along Living Roots (⁽	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	 Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I 	B13) [·] (C1) ₃ along Living Roots (^ı ron (C4)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) 	 Aquatic invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction 	B13) · (C1) s along Living Roots (v ron (C4) in Tilled Soils (C6)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Place 	B13) · (C1) · along Living Roots (· ron (C4) in Tilled Soils (C6) ants (D1) (LRR A)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Mount 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Pl. Other (Explain in Rema 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) mocks (D4)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI. Other (Explain in Rema) 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7	 Aquatic invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI. Other (Explain in Rema) 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Deposit2	Aquatic Invertebrates (Hydrogen Sulfide Odol Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Pl Other (Explain in Rema)	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch No Depth (Inch	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es):	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch	B13) • (C1) • along Living Roots (• ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) 	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Water Table Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Yes □	Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Image: Depth (Inch Image: Depth (Image: Depth Image: Depth (Image: Depth Image: Depth Image: Depth (Image: Depth Image: D	B13) (C1) along Living Roots (r ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es):	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Water Table Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m)	No No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es):	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Image: Depth (Inch No Image) No Image: Depth (Inch No Image) Onitoring well, aerial photos	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch No Depth (Inch No Depth (Inch onitoring well, aerial photos	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No I Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy s), if available:	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) · (C1) s along Living Roots (lron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠

APPENDIX B - WETLAND RATING SUMMARY

RATING SUMMARY – Western Washington

Name of wetland (or	ID #): Wetland '	Wetland "A"				Date of site visit:	11/13/2020
Rated by T. Hader;y	,	Trained by Ecology? ☑ Yes □ No Date of training Dec-					Dec-14
HGM Class used for rating Slope Wetland has multiple HGM classe							Yes ⊡No
NOTE: Form is not complete with out the figures requested (<i>figures can be combined</i>). Source of base aerial photo/map Google Earth							
OVERALL WETLA	ND CATEGORY		(based on	functions	⊡or special	characteristics (
1. Category of v	vetland based o Category Category X Category Category	n FUNCTION I - Total score II - Total score III - Total score III - Total scor IV - Total scor	S = 23 - 27 = 20 - 22 re = 16 - 19 re = 9 - 15)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Score for each function based on three ratings (order of ratings	
FUNCTION	Improving Water Quality	Hydrologic	Habitat			is not important)	
	List ap	propriate rating	g (H, M, L)			inportant y	
Site Potential	М	М	L		9	9 = H, H, H	
Landscape Potential	М	L	М		8	8 = H, H, M	
Value	Н	М	L	Total		7 = H, H, L	
Score Based on Ratings	7	5	5	17		7 = H, M, M 6 = H, M, L 6 = M, M, M	
					ł	5 = H, L, L 5 = M. M. L	

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	Category
Estuarine	
Wetland of High Conservation Value	
Bog	
Mature Forest	
Old Growth Forest	
Coastal Lagoon	
Interdunal	
None of the above	Х

4 = M, L, L 3 = L, L, L

Maps and Figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	A3
Hydroperiods	H 1.2	A1
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	A1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	۸1
(can be added to another figure)		
Boundary of area within 150 ft of the wetland (can be added to another figure)	S 2.1, S 5.1	A1
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	4.2
polygons for accessible habitat and undisturbed habitat		A2
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	A4
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	A5

Wetland Rating System for Western WA: 2014 Update Rating Form - Effective January 1, 2015

For questions 1 -7, the criteria described must apply to the entire unit being rated. If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1 - 7 apply, and go to Question 8.

- 1. Are the water levels in the entire unit usually controlled by tides except during floods?
 - ☑ NO go to 2□ YES the wetland class is Tidal Fringe go to 1.1
 - 1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
 - □ NO Saltwater Tidal Fringe (Estuarine)
 □ YES Freshwater Tidal Fringe
 If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands.
 If it is Saltwater Tidal Fringe it is an Estuarine wetland and is not scored. This method cannot be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

- ✓ NO go to 3
 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.
- 3. Does the entire wetland unit meet all of the following criteria?
 - The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
 - At least 30% of the open water area is deeper than 6.6 ft (2 m).
 - \checkmark NO go to 4
- YES The wetland class is Lake Fringe (Lacustrine Fringe)
- 4. Does the entire wetland unit **meet all** of the following criteria?
 - ☐ The wetland is on a slope (*slope can be very gradual*),
 - The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
 - ☐ The water leaves the wetland **without being impounded**.
 - □ NO go to 5

✓ YES - The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

5. Does the entire wetland unit **meet all** of the following criteria?

- The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,
- ☐ The overbank flooding occurs at least once every 2 years.
- \Box NO go to 6

□ YES - The wetland class is Riverine

NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding.

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

```
□ NO - go to 7 □ YES - The wetland class is Depressional
```

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO - go to 8 □ YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

Wetland name or number

SLOPE WETLANDS		
Water Quality Functions - Indicators that the site functions to improve water quality		
S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft	vertical drop in	
elevation for every 100 ft of horizontal distance)		
Slope is 1% or less	points = 3	0
Slope is > 1% - 2%	points = 2	0
Slope is > 2% - 5%	points = 1	
Slope is greater than 5%	points = 0	
S 1.2. <u>The soil 2 in below the surface (or duff layer)</u> is true clay or true organic		٥
(use NRCS definitions):	Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutar	nts:	
Choose the points appropriate for the description that best fits the plants in the wetland. Dense		
means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or		
mowed and plants are migher than 0 m. Dense, uncut berbaceous plants $> 90\%$ of the wetland area	pointe - 6	0
Dense, uncut, herbaceous plants > $\frac{1}{2}$ of area	points $= 0$	6
Dense, woody, plants $> 1/2$ of area	points = 3	
Dense, woody, plants $> 7_2$ of alea	points = 2	
Dense, uncut, nerbaceous plants > ¼ of area	points = 1	
Does not meet any of the criteria above for plants	points = 0	
Total for S 1 Add the points in t	the boxes above	6
Rating of Site Potential If score is: \Box 12 = H \Box 6 - 11 = M \Box 0 - 5 = L Re	ecord the rating on	the first page

S 2.0. Does the landscape have the potential to support the water quality function of the site?			
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the	e wetland in		1
land uses that generate pollutants?	Yes = 1	No = 0	I
S 2.2. Are there other sources of pollutants coming into the we not listed in question S 2.1?	tland that are		0
Other Sources	Yes = 1	No = 0	
Total for S 2	Add the points in the boxe	es above	1

Rating of Landscape Potential If score is: <a>I - 2 = M <a>0 = L

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable	to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a strea	am, river,	0
lake, or marine water that is on the 303(d) list?	Yes = 1 No = ()
S 3.2. Is the wetland in a basin or sub-basin where water quality is an	n issue?	1
At least one aquatic resource in the basin is on the 303(d) list.	Yes = 1 No = (
S 3.3. Has the site been identified in a watershed or local plan as imp	portant for	
maintaining water quality? Answer YES if there is a TMDL for the bas	sin in	2
which the unit is found?	Yes = 2 No = 0	
Total for S 3 Add t	the points in the boxes above	e 3
Rating of Value If score is: 2 - 4 = H 1 = M 0 = L	Record the rating o	n the first page

SLOPE WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion		
S 4.0. Does the site have the potential to reduce flooding and stream erosion?		
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. Stems of plants should be thick appuge (usually $\sum_{i=1}^{1} f_{i}$ in), or dense appuge to remain erect during surface flows		1
Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions	points = 1 points = 0	ľ
Rating of Site Potential If score is: $\Box 1 = M$ $\Box 0 = L$	Record the rating on	the first page
S 5.0. Does the landscape have the potential to support hydrologic functions of	f the site?	
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff?	Yes = 1 No = 0	0
Rating of Landscape Potential If score is: $\Box 1 = M$ $\Box 0 = L$	Record the rating on	the first page
S 6.0. Are the hydrologic functions provided by the site valuable to society?		
S 6.1. Distance to the nearest areas downstream that have flooding problems:		
The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds)	points = 2	1
Surface flooding problems are in a sub-basin farther down-gradient No flooding problems anywhere downstream	points = 1 points = 0	
S 6.2. Has the site been identified as important for flood storage or flood		
conveyance in a regional flood control plan?	Yes = 2 No = 0	
Total for S 6 Add the points	in the boxes above	1

Rating of Value If score is: $\Box 2 - 4 = H$ $\lor 1 = M$ $\Box 0 = L$

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

Wetland name or number

These questions apply to wetlands of all HGM classes.		
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat		
H 1.0. Does the site have the potential to provide habitat?		
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.		
 Aquatic bed Aquatic bed Emergent Scrub-shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover) I structure: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 	0	
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (<i>see text for descriptions of</i> <i>hydroperiods</i>).		
 Permanently flooded or inundated Seasonally flooded or inundated Seasonally flooded or inundated Occasionally flooded or inundated 2 types present: points = 1 Saturated only Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland 	1	
 □ Lake Fringe wetland 2 points □ Freshwater tidal wetland 2 points 		
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species points = 0	0	
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points Low = 1 point Moderate = 2 points	0	
All three diagrams in this row are HIGH = 3 points		

Wetland name or number

H 1.5. Special habitat features:		
Check the habitat features that are present in the wetland. <i>The number of checks is the number</i>		
of points.		
\Box Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long)		
\Box Standing snags (dbh > 4 in) within the wetland		
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends		
at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at		
least 33 ft (10 m)	0	
Stable steep banks of fine material that might be used by beaver or muskrat for denning		
(> 30 degree slope) OR signs of recent beaver activity are present (<i>cut shrubs or trees</i>		
that have not vet weathered where wood is exposed)		
At least 1/4 ac of thin-stemmed persistent plants or woody branches are present in areas		
that are permanently or seasonally inundated (structures for egg-laying by amphibians)		
☐ Invasive plants cover less than 25% of the wetland area in every stratum of plants (see		
H 1.1 for list of strata)		
Total for H 1 Add the points in the boxes above	1	
Rating of Site Potential If Score is: 15 - 18 = H 7 - 14 = M 9 0 - 6 = L Record the rating or	the first page	

H 2.0. Does the landscape have the potential to support the habitat function of the site?	
H 2.1 Accessible habitat (include only habitat that directly abuts wetland unit).	
Calculate:	
1 % undisturbed habitat + (0 % moderate & low intensity land uses / 2) = 1%	
If total accessible habitat is: $\sum_{i=1}^{1} (32.3\%)$ of 1 km Delygen	0
$> 7_3 (33.3\%)$ of 1 km Polygon points = 3	
20 - 33% of 1 km Polygon points = 2	
10 - 19% of 1 km Polygon points = 1	
< 10 % of 1 km Polygon points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.	
Calculate:	
6 % undisturbed habitat + (45 % moderate & low intensity land uses / 2) = 28.5%	
Undisturbed habitat > 50% of Polygon points = 3	2

Undisturbed habitat 10 - 50% and in 1-3 patches	points = 2	1
Undisturbed habitat 10 - 50% and > 3 patches	points = 1	1
Undisturbed habitat < 10% of 1 km Polygon	points = 0	L
H 2.3 Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (-2)	0
≤ 50% of 1km Polygon is high intensity	points = 0	L
Total for H 2	Add the points in the boxes above	2
Deting of Londonene Detential If Coursian D. 4. C. H	M . A I Deserved the reting on	the first page

Rating of Landscape Potential If Score is: \Box 4 - 6 = H \Box 1 - 3 = M \Box < 1 = L Record the rating on the first page

H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies?	Choose
only the highest score that applies to the wetland being rated.	
Site meets ANY of the following criteria:	points = 2
It has 3 or more priority habitats within 100 m (see next page)	
It provides habitat for Threatened or Endangered species (any plant	
or animal on the state or federal lists)	
☐ It is mapped as a location for an individual WDFW priority species	
It is a Wetland of High Conservation Value as determined by the	
Department of Natural Resources	
It has been categorized as an important habitat site in a local or	
regional comprehensive plan, in a Shoreline Master Plan, or in a	
watershed plan	
Site has 1 or 2 priority habitats (listed on next page) with in 100m	points = 1

Site does not meet any of the criteria above	points = 0
Rating of Value If Score is: $\Box 2 = H$ $\Box 1 = M$ $\Box 0 = L$	Record the rating on the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.

http://wdfw.wa.gov/publications/00165/wdfw00165.pdf_or access the list from here: http://wdfw.wa.gov/conservation/phs/list/

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE**: This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- □ **Oregon White Oak**: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- □ Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- □ **Instream**: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- □ **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves**: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs**: Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- □ **Talus**: Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are

Wetland name or number

addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland	Туре	Category
Chaok off	i any aritaria that apply to the walland List the asteriory when the appropriate criteria are mot	
	any chiena that apply to the wetland. List the category when the appropriate chiena are met.	
00 1.0.1	Does the wetland meet the following criteria for Estuarine wetlands?	
	The dominant water regime is tidal.	
	Vegetated, and	
	With a salinity greater than 0.5 ppt	
	☐ Yes - Go to SC 1.1	
SC 1.1.	Is the wetland within a National Wildlife Refuge, National Park, National Estuary	
	Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific	
	Reserve designated under WAC 332-30-151?	
	□ Yes = Category I □ No - Go to SC 1.2	
SC 1.2.	Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
	I he wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing,	
	and has less than 10% cover of non-halive plant species. (If non-halive species are	
	At least ³ /, of the landward edge of the wetland has a 100 ft buffer of shrub forest, or un-	
	arazed or un-mowed arassland	
	The wetland has at least two of the following features: tidal channels, depressions with	
	open water, or contiguous freshwater wetlands.	
	□ Yes = Category I □ No = Category II	
SC 2.0.	Wetlands of High Conservation Value (WHCV)	
SC 2.1.	Has the WA Department of Natural Resources updated their website to include the list	
	of Wetlands of High Conservation Value?	
SC 2.2.	Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
60.22	$\Box \text{ Yes} = \text{Category I} \qquad \forall \text{ No} = \text{Not WHCV}$	
30 2.3.	http://www.1.dpr.wa.gov/php/refdesk/datasearch/wphpwetlands.pdf	
	\Box Yes - Contact WNHP/WDNR and to SC 2.4 \Box No = Not WHCV	
SC 2.4.	Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation	
	Value and listed it on their website?	
	□ Yes = Category I □ No = Not WHCV	
SC 3.0. I	Bogs	
	Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation	
	in bogs? Use the key below. If you answer YES you will still need to rate the	
0004	wetland based on its functions.	
SC 3.1.	bees an area within the wetland unit have organic soil nonzons, either peaks or mucks,	
	That compose to in or more or the first 32 in or the soli profile? \Box No. Go to SC 3.2	
SC 3 2	Does an area within the wetland unit have organic soils either peats or mucks that are	
00 0.2.	less than 16 in deep over bedrock, or an impermeable hardpan such as clav or volcanic	
	ash, or that are floating on top of a lake or pond?	
	□ Yes - Go to SC 3.3 □ No = Is not a bog	
SC 3.3.	Does an area with peats or mucks have more than 70% cover of mosses at ground	
	level, AND at least a 30% cover of plant species listed in Table 4?	
	Yes = Is a Category I bog No - Go to SC 3.4	
	NOTE : If you are uncertain about the extent of mosses in the understory, you may	
	substitute that criterion by measuring the pH of the water that seeps into a hole dug at	
	least 16 in deep. If the pH is less than 5.0 and the plant species in Table 4 are present,	
SC 3 4	the wetland is a bog.	
00 0.4.	western red cedar western hemlock lodgepole nine guaking aspen. Engelmann	
	spruce, or western white pine, AND any of the species (or combination of species) listed	
•		•

• •				•	`		•	,	1
in Table 4 provide more	thor	200% of th	ha aavar	undor	the conony	2			
In Table 4 provide more	แล	1 30 /0 01 1	ie covei	unuer	the carlopy	'			
	— .		. .			<u> </u>	-		
		Yes = is a	Catego	rv i ho	a		= Is no	ot a boc	1
		100 IO U	outogo		3				1

Wetland name or number

SC 4 0	Forested Wetlands	
00 4.0.1	Does the wetland have at least 1 contiguous acre of forest that meets one of these	
	aritaria for the WA Department of Fish and Wildlife's forests as priority behitsto? If you	
	chiena for the WA Department of Fish and Wildlife's forests as phonity habitats? If you	
	answer YES you will still need to rate the wetland based on its functions.	
	Old-growth forests (west of Cascade crest): Stands of at least two tree species,	
	forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac	
	(20 trees/ha) that are at least 200 years of age OR have a diameter at breast height	
	(dbh) of 32 in (81 cm) or more.	
	Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-	
	200 years old OR the species that make up the canopy have an average diameter (dbh)	
	exceeding 21 in (53 cm).	
	Yes = Category I No = Not a forested wetland for this section	
SC 5.0.	Wetlands in Coastal Lagoons	
	Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
	The wetland lies in a depression adjacent to marine waters that is wholly or partially	
	separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently,	
	rocks	
	The lagoon in which the wetland is located contains ponded water that is saline or	
	brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to	
	be measured near the bottom)	
	\Box Ves. Go to SC 5.1 \Box No - Not a wetland in a coastal largeon	
SC 5 1 1	\Box res = 60 to 50 5.1 \Box No = Not a wetland in a coastal lagoon	
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing)	
	The weitand is relatively undisturbed (has no diking, dictining, hinning, cultivation, grazing),	
	and has less than 20% cover of aggressive, opportunistic plant species (see list of	
	species on p. 100).	
	At least % of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-	
	grazed or un-mowed grassland.	
	The wetland is larger than $\frac{1}{10}$ ac (4350 ft ²)	
	☐ Yes = Category I ☐ No = Category II	
SC 6.0.	nterdunal Wetlands	
	Is the wetland west of the 1889 line (also called the Western Boundary of Upland	
	Ownership or WBUO)? If you answer yes you will still need to rate the wetland	
	based on its habitat functions.	
	In practical terms that means the following geographic areas:	
	Long Beach Peninsula: Lands west of SR 103	
	Grayland-Westport: Lands west of SR 105	
	Ocean Shores-Copalis: Lands west of SR 115 and SR 109	
	\Box Yes - Go to SC 6.1 \Box No = Not an interdunal wetland for rating	
SC 6.1.	Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form	
-	(rates H,H,H or H,H,M for the three aspects of function)?	
	\Box Yes = Category I \Box No - Go to SC 6.2	
SC 6 2	Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	
	$\Box \text{ Yes} = \textbf{Category II} \qquad \Box \text{ No} - \text{Go to } \textbf{SC} \textbf{ 6} \textbf{ 3}$	
SC 6 3	Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and	
0.0.	1 ac?	
	$\Box Y_{\text{PS}} = Category III \qquad \Box N_{\text{O}} = Category IV$	
Catagor	\sim 103 - Category III \sim 100 - Category IV	
	y or welland based on operial onalactensities	
n you an	swered no for all types, enter inot Applicable on Summary Form	

SF = Seasonally Flooded S = Saturated

150-offset

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A1 Hydroperiods Jackson Villa 4

Accessible Habitat

1% Undisturbed (AU)0% Moderate & Low Intensity Land Use/2 = (AML)

Undisturbed Habitat

6% Undisturbed (UH)45% Moderate & Low Intensity Land Use/2 = (UML)

High Intensity = HI (48%)

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure A2 1km Polygon Jackson Villa 4

E = Emergent

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A3 Cowardin Plant Classes Jackson Villa 4

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure A4 303(d) Listed Waters Jackson Villa 4

Lis	ting ID: 6670
Mai	n Listing Information
Listing ID: 6670	Current Category: 4A
Waterbody Name: DILLENBAUGH CREEK	
Medium: Water	View Category History
Parameter: Bacteria	
WQI Project: Upper Chehalis River Bacteria TMDL	
Designated Use: None	
	Assessment Unit
Assessment Unit ID: 17100103006316 County: Lewis	
WRIA: 23 - Ur	per Chehalis
	Basis Statement
Crawford 1987 2 excursions beyond the criterion betwee	1.5/86 and 6/86 at RM 1.7
	Remarks
Part of the Upper Chehalis Fecal	Coliform Bacteria TMDL approved by EPA 07/22/04kk
	Data Sources
	Man Link
	Back To Posults

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A5 TMDL Jackson Villa 4 **APPENDIX C - CLIMATOLOGICAL DATA**

Daily Data | AgWeatherNet at Washington State University

Date	Date	Min°F	Avg°F	Max°F	Avg1.5m DP°F	Avg1.5m RH%	Avg1.5m LWu.	AvgDir	Avg Speedmph	2m MaxGustmph	in. °F	Min°F	Avg°F	AvgSoilVWC%	TotPrecin	TotalSolarRadMJ/m ²	EToin	ETrin	Avg2m Atm.Pressiı
2020/10/30	30	37.4	49.4	59.3	44.0	82.9	0.07	SW	3.9	16.0	51.4	52.5	53.1	41.9	0.16	6.51	0.04	0.05	30.14
2020/10/31	31	32.9	42.9	59.3	38.6	86.5	0.05	Ν	2.2	12.1	48.5	51.2	52.1	41.9	0.01	8.62	0.03	0.05	30.36
2020/11/01	1	32.2	43.4	64.8	39.8	88.9	0.06	SW	2.0	7.1	47.7	50.0	50.9	41.6	0.00	9.44	0.04	0.05	30.22
2020/11/02	2	31.0	44.8	67.2	39.8	86.1	0.06	S	2.6	9.6	47.7	49.6	50.6	41.4	0.00	9.87	0.05	0.07	30.10
2020/11/03	3	38.5	50.7	59.0	48.5	92.3	0.09	S	6.5	22.8	49.3	50.2	50.7	42.7	0.60	2.80	0.02	0.03	29.95
2020/11/04	4	58.5	60.7	64.0	57.7	89.9	0.02	S	7.6	20.0	55.1	51.4	53.0	43.1	0.33	2.64	0.04	0.05	30.07
2020/11/05	5	46.2	51.9	59.8	50.3	94.1	0.19	SW	2.8	11.0	54.5	54.4	54.9	44.1	0.78	1.10	0.01	0.02	30.05
2020/11/06	6	33.2	43.2	49.4	40.4	90.3	0.12	Ν	5.2	20.3	50.3	52.4	53.3	43.7	0.45	3.35	0.02	0.02	29.85
2020/11/07	7	30.3	35.3	42.2	34.2	96.0	0.10	W	2.4	12.1	46.1	49.8	50.6	42.3	0.00	3.22	0.02	0.02	29.79
2020/11/08	8	25.3	34.0	48.3	27.1	81.4	0.04	Ν	2.0	12.1	43.5	47.7	48.5	41.8	0.00	9.41	0.02	0.04	30.04
2020/11/09	9	25.0	34.5	41.3	30.4	87.0	0.01	S	4.1	15.0	41.0	45.7	46.4	41.5	0.13	3.49	0.02	0.03	30.20
2020/11/10	10	37.3	42.0	48.1	40.2	93.5	0.13	S	3.8	12.1	43.6	45.4	45.8	43.0	0.39	3.74	0.02	0.03	30.04
2020/11/11	11	34.2	37.9	42.2	36.8	95.9	0.11	SW	1.9	8.2	43.7	46.0	46.3	42.6	0.05	2.92	0.01	0.02	30.17
2020/11/12	12	35.0	41.2	46.3	37.3	86.6	0.06	S	6.8	25.3	43.6	45.8	46.1	42.0	0.01	3.16	0.03	0.04	29.95
2020/11/13	13	39.3	44.8	49.5	41.4	87.9	0.12	S	6.6	29.6	45.4	46.0	46.4	43.9	1.60	3.13	0.02	0.04	29.57

CONTACT INFORMATION

PREPARER INFORMATION

	AAG PROJECT NUMBER:	AAG20-109
	CONTACT:	CURTIS D. CUSHMAN
	ADDRESS:	8947 BUTTONWOOD LANE NE Olympia, Washington 98516
	TELEPHONE:	(360) 491-5155
	CELL:	(360) 481-6677
	EMAIL ADDRESS:	CURTIS.CUSHMAN@COMCAST.NET
CLIEN	NT INFORMATION	
	CLIENT:	AARON FULLER
	TELEPHONE:	(360) 880-4927
	BILLING ADDRESS:	645 SE Prospect Street Chehalis, Washington 98532
	SITE ADDRESS:	0 JACKSON ROAD Chehalis, Washington Section 03 Township 13N Range 02W PT LT 8 SE RD BLK 1 Richardt's RPLT BLK 4-6 Parcuvia ADD PRCL B BL-09-148 335384
	PARCEL:	010799001000
	GPS LOCATION:	46.641138 -122.926586 (DD)

ALL AMERICAN GEOTECHNICAL, INC.

SITE VISIT AND EVALUATION

AARON FULLER FULLER DESIGNS 645 SE PROSPECT STREET CHEHALIS, WA 98532

> RE: JACKSON VILLAS LANDSLIDE HAZARD SITE VISIT 0 JACKSON ROAD CHEHALIS, WASHINGTON SECTION 03 TOWNSHIP 13N RANGE 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD PRCL B BL-09-148 335384 PARCEL: 010799001000

> > **NOVEMBER 24, 2020**

Dear Aaron Fuller:

All American Geotechnical, Inc (AAG) was commissioned by Aaron Fuller (client) in November, 2020, to do a site visit to determine the geology and landslide potential for the above parcel. This is in reference to a proposed development of multiple duplex family dwellings on the parcel. The site visit was done by Curtis D Cushman, L.G., L.E.G., on November 13, 2020. The client was not on site. The day was rainy.

SITE

The parcel is an imperfect rectangle, long to the northeast-southwest. A square section of the southernmost corner is omitted from the rectangle as it is not part of the parcel. This forms a blunt panhandle on the parcel's southwestern side which faces Jackson Highway. The northwest side is along Kennicott Road and the northeast side is along Hosanna Lane. The parcel looks like Nebraska.

The parcel slopes down to the southwest with the steepest area near the center of approximately16%.

SITE GEOLOGY

The parcel is overall mapped (Lewis County GIS and confirmed on the Centralia 100:000 Quadrangle) as being a "mass wasting deposit(s), mostly landslide" (**Qls**). This is a general description and is not site-specific. These deposits are common in the Centralia-Chehalis region where they are commonly associated with erosion of the **Qlh** Logan Hill Formation sediments at the end of the last glacial epoch.

Allen Fiksdal, in Slope Stability of the Centralia-Chehalis Area Lewis County, Washington (OF Report 78-2, 1978), mapped these features as **Ols** - Old Landslides. He wrote: .these areas are not generally observed to be unstable, but because of the nature of subsurface materials, low density development is recommended. Engineering studies should be required if natural slopes are over30 percent. No such slopes were observed.

ALL AMERICAN GEOTECHNICAL, INC.

Site observation indicated various lithologies, dominantly sand and silt with gravel present as well. According to the client, the area of soil lining Hosanna Lane contains fill to a depth of 10 feet at least, including rubble, organic refuse, and concrete.

Along this area and looking into the higher banks of material and the overall surface, there was no evidence of faulting, failure, or cracking on a large scale. There is abundant vegetation, so some features may be obscure. However, overall, there is no evidence of movement or downslope displacement.

Liquefaction is Low to Moderate, and the site class is D which is Stiff Soil.

SITE HYDROLOGY

There was no ponding seen on the upper part of the property but light sheet water flow was entering the parcel from the slope descending from Hosanna Lane. There is a wetlands delineated in the center of the property.

SITE SOILS

The USDA WSS maps most of the site as Galvin silt loam, 0 to 8 percent slopes.

89—Galvin silt loam, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 2hht
- Elevation: 100 to 1,770 feet
- Mean annual precipitation: 40 to 70 inches
- Mean annual air temperature: 52 degrees F
- Frost-free period: 150 to 200 days

Map Unit Composition

- Galvin and similar soils: 85 percent
- Minor components: 15 percent

Description of Galvin

Setting

- Landform: Alluvial fans
- Parent material: Alluvium derived from sandstone and shale

Typical profile

- H1 0 to 14 inches: silt loam
- H2 14 to 41 inches: silty clay loam
- H3 41 to 60 inches: silty clay

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: More than 80 inches

ALL AMERICAN GEOTECHNICAL, INC.

- Drainage class: Somewhat poorly drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water capacity: High (about 11.2 inches)

This corresponds in part, but same sandy material was seen. However, as there is certainly fill on site, coarser sediments may be possible as well.

SITE VEGETATION

The site has been cleared to grass and scrub with the exception of isolated trees scattered on-site with some fringing trees and shrubs.

CONCLUSIONS

Based on the results of the site visit and an extensive literature search, the parcel does not appear to pose a landslide hazard. This determination is subject to change if, in construction, a glide plane is uncovered or there is mass wasting. Such an eventuality is not considered likely.

Report Limitations and Guidelines for Use

We have prepared this report for the exclusive use of Aaron Fuller and his authorized agents for the proposed building location in Lewis County, Washington. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, expressed or implied, should be understood.

READ THESE PROVISIONS CLOSELY

Some clients, design professionals, and contractors may not recognize that the geoscience practices (geotechnical engineering or geology) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. All American Geotechnical includes these explanatory "limitations" provisions in our reports to help reduce such risks.
ALL AMERICAN GEOTECHNICAL, INC.

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, geotechnical engineering or geologic reporting does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Respectfully Submitted, GEOTECHNICAL TESTING LABORATORY

Curtis D. Cushman, L.G., L.E.G. Senior Engineering Geologist

5

© Lewis County GIS

Jackson Villas PN 010799001000 ALL AMERICAN GEOTECHNICAL, INC.

11/23/2020, 7:29:04 PM			1.4,514
Search Results: Parcels	0 205	410	
Override 1	NAD 1983 StatePlane Wa	ashington South	FIPS 4602 Feet
Parcels		Lewis	County
AAG20-109	8947 Buttonwood Lane NE, Olympia, WA 9851,6,878 -		7
Lewis County does not guarantee the accurat misuse by others regarding this material. It is legal, engineering, or survey standards. Pleas decisions.	Phone #: (360) 491-5155 Cell #: (360) 481-6677 cy of the information shown on this map and is not responsible for any use or provided for general informational purposes only. This map does not meet se practice due diligence and consult with licensed experts before making		

© Lewis County GIS | 2019 Imagery © Pictometry & Lewis County

SECTION 8 – OPERATION AND MAINTENANCE MANUAL

The Following pages contain maintenance needs for most of the components that are part of your drainage system, as well as components that you may not have. Let us know if there are any components that are missing from these pages. Ignore the requirements that do not apply to your system. You should plan to complete a checklist for all system components on the following schedule

- 1. Monthly from November through April
- 2. Once in late summer (preferably September).
- 3. After any major storm (use 1" of precipitation in 24 hours) for any items marked "S".

Using photocopies of these pages, check off the items you looked for after each inspection. Add comments on issues found and actions taken. Keep these records in your files. These files will be needed to write your annual report if required. Some items may not need to be looked at every time an inspection is done.

You may call the jurisdiction for technical assistance. Please do not hesitate to call, especially if you are unsure whether a situation you have discovered may be a developing issue.

No. 1	- Detention F	onds
-------	---------------	------

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
General	Trash & Debris	Any trash and debris which exceed 1 cubic feet per 1,000 square feet. In general, there should be no visual evidence of dumping.	Trash and debris cleared from site.
		If less than threshold all trash and debris will be removed as part of next scheduled maintenance.	
	Poisonous Vegetation and noxious weeds	Any poisonous or nuisance vegetation which may constitute a hazard to maintenance personnel or the public.	No danger of poisonous vegetation where maintenance personnel or the public might normally be. (Coordinate with local health department)
		Any evidence of noxious weeds as defined by State or local regulations.	Complete eradication of noxious weeds may not be possible. Compliance with
		(Apply requirements of adopted IPM policies for the use of herbicides).	required
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants	No contaminants
		(Coordinate removal/cleanup with local water quality response agency).	or pollutants present.
	Rodent Holes	Any evidence of rodent holes if facility is acting as a dam or berm, or any evidence of water piping through dam or berm via rodent holes.	Rodents destroyed and dam or berm repaired. (Coordinate with local health department; coordinate with Ecology Dam Safety Office if pond exceeds 10 acre-feet.)

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
Emergency Overflow/ Spillway and Berms over 4 feet in height.	Tree Growth	Tree growth on emergency spillways creates blockage problems and may cause failure of the berm due to uncontrolled overtopping.	Trees should be removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be
		Tree growth on berms over 4 feet in height may lead to piping through the berm which could lead to failure of the berm.	removed and the berm restored. A licensed civil engineer should be consulted for proper berm/spillway restoration.
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.
		(Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	
Emergency Overflow/ Spillway	Emergency Overflow/ Spillway	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil at the top of out flow path of spillway.	Rocks and pad depth are restored to design standards.
		(Rip-rap on inside slopes need not be replaced.)	
	Erosion	See "Side Slopes of Pond"	

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
	Beaver Dams	Dam results in change or function of the facility.	Facility is returned to design function. (Coordinate trapping of beavers and removal of dams with appropriate permitting agencies)
	Insects	When insects such as wasps and hornets interfere with maintenance activities.	Insects destroyed or removed from site. Apply insecticides in compliance with adopted IPM policies
	Tree Growth and Hazard Trees	Tree growth does not allow maintenance access or interferes with maintenance activity (i.e., slope mowing, silt removal, vactoring, or equipment movements). If trees are not interfering with access or maintenance, do not remove	Trees do not hinder maintenance activities. Harvested trees should be recycled into mulch or other beneficial uses (e.g., alders for firewood). Remove hazard Trees
		identified (Use a certified Arborist to determine health of tree or removal requirements)	
Side Slopes of Pond	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion.	Slopes should be stabilized using appropriate erosion control measure(s); e.g., rock reinforcement, planting of grass, compaction.
		Any erosion observed on a compacted berm embankment.	If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.
Storage Area	Sediment	Accumulated sediment that exceeds 10% of the designed pond depth unless otherwise specified or affects inletting or outletting condition of the facility.	Sediment cleaned out to designed pond shape and depth; pond reseeded if necessary to control erosion.
	Liner (If Applicable)	Liner is visible and has more than three 1/4-inch holes in it.	Liner repaired or replaced. Liner is fully covered.
Pond Berms (Dikes)	Settlements	Any part of berm which has settled 4 inches lower than the design elevation.	Dike is built back to the design elevation.
		If settlement is apparent, measure berm to determine amount of settlement.	
		Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the settlement.	
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.
		(Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
Storage Area	Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
	Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter.	All sediment and debris removed from storage area.
		(Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	
	Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility.	All joint between tank/pipe sections
		(Will require engineering analysis to determine structural stability).	are sealed.
	Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications and is structurally sound.
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls.	No cracks more than 1/4-inch wide at the joint of the inlet/outlet pipe.
Manhole	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.
Catch Basins	See "Catch Basins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 3 – Closed Detention Systems (Tanks/Vaults)

No. 4 – Contro	I Structure/Flow	Restrictor
----------------	------------------	------------

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
	Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

No. 6 – Debris Barriers (e.g., Trash Racks)

Maintenance Components	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
Metal	Damaged/ Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
		Bars are missing or entire barrier missing.	Bars in place according to design.
		Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
	Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe	Barrier firmly attached to pipe

No. 10 – Filter Strips

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
General	Sediment Accumulation on Grass	Sediment depth exceeds 2 inches.	Remove sediment deposits, re-level so slope is even and flows pass evenly through strip.
	Vegetation	When the grass becomes excessively tall (greater than 10-inches); when nuisance weeds and other vegetation starts to take over.	Mow grass, control nuisance vegetation, such that flow not impeded. Grass should be mowed to a height between 3-4 inches.
	Trash and Debris Accumulation	Trash and debris accumulated on the filter strip.	Remove trash and Debris from filter.
	Erosion/Scouring	Eroded or scoured areas due to flow channelization, or higher flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. The grass will creep in over the rock in time. If bare areas are large, generally greater than 12 inches wide, the filter strip should be re-graded and re- seeded. For smaller bare areas, overseed when bare spots are evident.
	Flow spreader	Flow spreader uneven or clogged so that flows are not uniformly distributed through entire filter width.	Level the spreader and clean so that flows are spread evenly over entire filter width.

Maintenance **Condition When Maintenance is** Defect **Results Expected When** Component Needed Maintenance is Performed **Below Ground** Sediment Sediment depth exceeds 0.25-inches. No sediment deposits which Accumulation on would impede permeability of Vault the compost media. Media. Sediment depth exceeds 6-inches in first No sediment deposits in vault Sediment Accumulation in chamber. bottom of first chamber. Vault Trash/Debris Trash and debris accumulated on Trash and debris removed from Accumulation compost filter bed. the compost filter bed. Sediment in When drain pipes, clean-outs, become Sediment and debris removed. Drain full with sediment and/or debris. Pipes/Clean-Outs **Damaged Pipes** Any part of the pipes that are crushed or Pipe repaired and/or replaced. damaged due to corrosion and/or settlement. Access Cover Cover cannot be opened; one person Cover repaired to proper Damaged/Not cannot open the cover using normal working specifications or Working lifting pressure, corrosion/deformation of replaced. cover. Vault Structure Cracks wider than 1/2-inch or evidence Vault replaced or repairs made **Includes Cracks** of soil particles entering the structure so that vault meets design in Wall, Bottom, through the cracks, or specifications and is structurally Damage to maintenance/inspection personnel sound. Frame and/or determine that the vault is not structurally Top Slab sound. Cracks wider than 1/2-inch at the joint of Vault repaired so that no cracks any inlet/outlet pipe or evidence of soil exist wider than 1/4-inch at the particles entering through the cracks. joint of the inlet/outlet pipe. Baffles Baffles corroding, cracking warping, Baffles repaired or replaced to and/or showing signs of failure as specifications. determined by maintenance/inspection person. Access Ladder Ladder is corroded or deteriorated, not Ladder replaced or repaired and Damaged functioning properly, not securely meets specifications, and is attached to structure wall, missing rungs, safe to use as determined by cracks, and misaligned. inspection personnel. **Below Ground** Media Drawdown of water through the media Media cartridges replaced. Cartridge Type takes longer than 1 hour, and/or overflow occurs frequently. Short Circuiting Flows do not properly enter filter Filter cartridges replaced. cartridges.

No. 15 – Manufactured Media Filters)

No. 18 – Catchbasin Inserts

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Sediment Accumulation	When sediment forms a cap over the insert media of the insert and/or unit.	No sediment cap on the insert media and its unit.
	Trash and Debris Accumulation	Trash and debris accumulates on insert unit creating a blockage/restriction.	Trash and debris removed from insert unit. Runoff freely flows into catch basin.
	Media Insert Not Removing Oil	Effluent water from media insert has a visible sheen.	Effluent water from media insert is free of oils and has no visible sheen.
	Media Insert Water Saturated	Catch basin insert is saturated with water and no longer has the capacity to absorb.	Remove and replace media insert
	Media Insert-Oil Saturated	Media oil saturated due to petroleum spill that drains into catch basin.	Remove and replace media insert.
	Media Insert Use Beyond Normal Product Life	Media has been used beyond the typical average life of media insert product.	Remove and replace media at regular intervals, depending on insert product.

SECTION 9 – DRAFT STORMWATER MAINTENANCE AGREEMENT

The following pages contain a draft maintenance agreement to be completed prior to final approval. Upon completion of road construction and stormwater facilities; a signed agreement will be executed, and a copy provided to the City of Chehalis.

AFTER RECORDING RETURN TO:

PLEASE PRINT OR TYPE ALL INFORMATION DOCUMENT TITLE(S) (OR

TRANSACTIONS CONTAINED THEREIN): Stormwater Maintenance Agreement

REFERENCE NUMBER(S) OF DOCUMENTS ASSIGNED/RELEASED:

GRANTOR/BORROWER (LAST NAME FIRST, FIRST NAME AND INITIALS):

Industries, Lakewood McGlaughlin, Austin

ADDITIONAL NAMES LISTED ON PAGE N/A OF DOCUMENT.

GRANTEE/ASSIGNEE/BENEFICIARY (LAST NAME FIRST, FIRST NAME AND INITIALS):

City of Washington, Chehalis

ADDITIONAL NAMES LISTED ON PAGE <u>N/A</u> OF DOCUMENT.

LEGAL DESCRIPTION (ABBREVIATED: I.E. LOT, BLOCK, PLAT OR SECTION, TOWNSHIP, RANGE) <u>Section 03 Township 13N Range 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6</u> PARCUVIA ADD PRCL B BL-09-148 335384

COMPLETE LEGAL DESCRIPTION IS LISTED ON PAGE <u>N / A</u> OF DOCUMENT.

ASSESSOR'S TAX PARCEL NUMBER(S)

010799001000

THE AUDITOR/RECORDER WILL RELY ON THE INFORMATION PROVIDED ON THIS FORM. THE STAFF WILL NOT READ THE DOCUMENT TO VERIFY THE ACCURACY OR COMPLETENESS OF THE INDEXING INFORMATION PROVIDED HEREIN. Parcel Number(s): <u>010799001000</u> Project Name: <u>Jackson Villas #4</u> Address: <u>0 Jackson Highway, Chehalis, WA 98532</u>

THIS AGREEMENT, made this ______ day of _____, 20_, by and between Mike and Patricia Duch, hereinafter referred to as the "Owners(s)" of the following property and Lewis County hereinafter referred to as the "County".

WITNESSETH, that

WHEREAS, Owner has submitted for approval by County a permit application and Site Plan for the construction and installation of stormwater management facilities pursuant to County Code chapter 15.45; and

WHEREAS, the County Code requires, as a condition of permit approval, a maintenance agreement between the County and the Owner ensuring the Owner constructs and maintains the stormwater facilities identified in the Site Plan.

THEREFORE, the Owner of certain real property, with full authority to execute deeds, mortgages, other covenants, do hereby covenant with the County and agree as follows:

- 1. Owner shall construct and install stormwater management facilities as depicted and shown on the Record Drawings for the above referenced parcel number(s)
- 2. Owner shall continuously maintain the stormwater management facilities as shown on the Site Plan in good working order and as specified in the maintenance schedule.
- 3. Owner hereby grants County, its authorized agents and employees, to enter onto the Property to inspect the stormwater facilities pursuant to Chapter 15.45 of the County Code.
- 4. In the event Owner fails to maintain the stormwater management facilities as shown on the Site Plan in good working order acceptable to the County, the County may enter the Property and take whatever steps deemed necessary and appropriate to maintain (including repair or replace) said stormwater facilities. It is expressly understood and agreed that the County is under no obligation to maintain or repair or replace said facilities, and in no event shall this Agreement be construed to impose such an obligation on the County.
- 5. In the event that the County performs work of any nature pursuant to section 4 of this agreement or expends any funds in performance of such work for labor, equipment, supplies or materials, Owner shall reimburse County for all reasonable costs incurred. Owner, its executors, administrators, assigns, heirs, and any other successors in interest, shall reimburse County for all costs within thirty (30) days of Owner's receipt of written

demand by the County for reasonable costs incurred, including but not limited to attorney fees, collection costs, and interest at the statutory rate.

- 6. It is the intent of this Agreement to ensure the continuous and proper maintenance of stormwater management facilities by the Owner, its heirs, successors and assigns; provided, however, that this Agreement shall not be deemed to create or affect any additional liability of any party for damage alleged to result from or caused by stormwater management.
- 7. Owner, its executors, administrators, assigns, and any other successors in interest, shall indemnify and hold the County, its agents and employees harmless from any and all damages, accidents, casualties, occurrences, or claims which might arise or be asserted against County, its agents or employees, from the construction, presence, existence, or maintenance, of the stormwater management facilities by Owner.
- 8. This Agreement shall be recorded among the land records of Lewis County, Washington, and shall constitute a covenant running with the land, and shall be binding upon Owner, its administrators, executors, assigns, heirs, and any other successor in interest.

Date :	Signature:
	Name:
	Title:

State of Washington

County of _____

I certify that I know or have satisfactory evidence that _____(name of person) is the person who appeared before me, and said person acknowledged that (he/she) signed this instrument and acknowledged it to be (his/her) free and voluntary act for the uses and purposes mentioned in the instrument.

Dated:_____

(Seal or stamp)

Signature

Title

My appointment expires:

Bank Use Plan For Jackson Villa 4 XXX Jackson Hwy Chehalis, Washington

Prepared for: Lakewood Investors, LLC 12030 Sunrise Valley Dr, Suite 450 Reston, VA 20191

Project # 187.04

Prepared by: Loowit Consulting Group, LLC 312 Gray Road Castle Rock, WA 98611 360.431.5118

SIGNATURE PAGE 2
PROJECT SUMMARY
PROJECT DESCRIPTION
EXISTING CONDITIONS of WETLANDS and BUFFERS
LOCATION
LANDSCAPE POSITION
SIZE
VEGETATION
SOILS
HYDROLOGY5
SURROUNDING LAND USES
FUNCTIONS
BUFFERS
AVOIDANCE and MINIMIZATION of WETLAND IMPACTS
IMPACTED WETLAND FUNCTIONS
Water Quality10
Hydrologic10
Habitat10
WETLAND FUNCTIONS PROVIDED at MITIGATION BANK
WETLAND FUNCTIONS NOT MITIGATED at MITIGATION BANK
CREDIT PURCHASE or TRANFER TIMING
REFERENCES
ATTACHMENT A - Project Drawings 18
ATTACHMENT B - Wetland Delineation Report

Table of Contents

SIGNATURE PAGE

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned:

Mint). Har

Timothy J. Haderly, Principal Scientist/Owner Loowit Consulting Group, LLC

PROJECT SUMMARY

APPLICANT

Lakewood Investors, LLC 12030 Sunrise Valley Dr, Suite 450 Reston, VA 20191

PROJECT ENGINEER

Fuller Designs 1101 Kresky Avenue Centralia, WA 98531 Aaron Fuller, PE afuller@fullerdesigns.org (360) 807-4420

ENVIRONMENTAL CONSULTANT

Loowit Consulting Group, LLC Timothy J. Haderly, Principal Scientist 312 Gray Road Castle Rock, WA 98611 Thaderly42@gmail.com (360) 431-5118

Project Name	Jackson Villa 4 Apartments	
Section, Township, Range	Section 03, Township 13 North, Range 2 West, WM	
Permanent Wetland Impact	20,473 sq ft (0.47 acres)	
Local Jurisdiction	City of Chehalis, WA	
Proposed Mitigation	Chehalis Basin Wetland Mitigation Bank	

Table 1: Project Summary

PROJECT DESCRIPTION

This bank use plan has been developed to address permanent direct impacts to jurisdictional wetlands from the proposed Jackson Villa 4 Apartments project. The subject site is comprised of a single parcel of property (TPN 010799001000) east of Jackson Highway in southeast Chehalis, Washington (Drawing 2). The subject site is dominated by pasture grasses, teasel, thistles, and a few scattered willow clumps. There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property. The site is currently unused and undeveloped.

The proposed project involves the construction of a phased multi-family residential facility including site access, street improvements, public supplied sewer/water, on-site parking, lighting and landscaping within the 4.32 acres (Figure 3). Phase one will involve construction of 45 dwelling units within the onsite uplands, with no wetland impacts proposed. Phase two will involve construction of 20 dwelling units within the onsite wetland area.

This bank use plan was prepared using the following guidance documents:

- Interagency Review Team for Washington State's Guidance Paper (2009)
- Washington Department of Ecology's (Ecology) *Wetland Mitigation in Washington State* (2006)
- U.S. Army Corps of Engineers' (Corps) *Compensatory Mitigation for Losses of Aquatic Resources* (33 C.F.R. §332 (2008)

EXISTING CONDITIONS of WETLANDS and BUFFERS

Loowit Consulting Group, LLC (LCG) completed a wetland delineation report on November 13, 2020, included as Attachment B. The following is a brief summary of the onsite wetland, for more detailed information the delineation report (Attachment B) should be consulted.

LOCATION

One small jurisdictional wetland was located along the eastern property boundary at the subject site (Drawing 2).

LANDSCAPE POSITION

The subject site area is within Watershed Resource Inventory Area (WRIA) 23 – Upper Chehalis, Hydrologic Unit Code (HUC): 171001030402.

SIZE

The wetland is 20,473 sq ft (0.47 acres) in size.

VEGETATION

The onsite wetland is dominated by reed canary grass, Douglas spirea, teasel, scotch broom, Canada thistle, tall fescue, Himalayan blackberry, Kentucky bluegrass, wild carrot, soft rush, and orchard grass. A few scattered young trees and shrubs are found throughout the site, including shore pine, Pacific willow, Oregon ash, hawthorne, Douglas-fir, and beaked hazelnut. See the wetland delineation report for more detailed information (Attachment B).

SOILS

Soils at the site are mapped as hydric Lacamas silt loam, 0 to 3 percent slopes (#118), nonhydric Galvin silt loam, 0 to 8 percent slopes (#89), and hydric Scamman silty clay loam, 5 to 15 percent slopes (#194). See the wetland delineation report for more detailed information (Attachment B).

HYDROLOGY

The project site is situated within the Chehalis and Newaukum river valley east of Chehalis. The subject site generally slopes to the southwest into a slope wetland area in the southwestern portion of the subject site. Seasonal water drains from the wetland into a culvert beneath Jackson Hwy eventually draining into Dillenbaugh Creek, a tributary of the Chehalis River. Figure 6 depicts mapped streams to the north and south of the subject but nothing within adjacent to the subject site. See the wetland delineation report for more detailed information (Attachment B).

SURROUNDING LAND USES

Land uses adjacent to the subject site include:

- To the South Residential and unimproved property
- To the North Residential
- To the West Residential and open space

• To the East – Residential and open space

FUNCTIONS

The primary function of the onsite wetland is water storage and sediment and nutrient retention. The wetland is Category III with a moderate level of functions for water quality, hydrology, and habitat.

BUFFERS

According to *CMC 17.23.030*, the City of Chehalis requires buffers on all jurisdictional wetlands according to the category of wetland and habitat score. The onsite wetland is Category III with a habitat score of 5, requiring a 100-foot-wide buffer. The buffer area is generally a mix of unmowed emergent grasses and is scattered with a few young trees and shrubs. See the wetland delineation report for more detailed information (Attachment B).

Table 2: Wetland Summary

	Category ^B	Class ^A	Wetland Size,
Wetland ID			Total
			sq ft
			(acres)
Motland A	111	Slope,	20,473
vveuand A		Emergent	(0.47)

^A Hydrogeomorphic Classification

^B Washington State Wetland Rating System for Western Washington: 2014 Update

AVOIDANCE and MINIMIZATION of WETLAND IMPACTS

Mitigation sequencing includes first avoidance, then minimization, and finally compensation for unavoidable impacts to wetlands. Phase II of the proposed development was originally designed to completely avoid the on-site wetland, similar to Phase I. However, after design review it became clear that avoiding the wetland would result in reducing the square footage of buildings to a point that the project would not be financially feasible and would not meet the residential design criteria required by City of Chehalis development standards and zoning criteria. Partial impact of the onsite wetland would result in a further segmented habitat from current levels, resulting in an overall reduction in functions of a low quality wetland system, while not still meeting the project goals for providing residential units where they are in high need. The project site is within the City of Chehalis, has existing access via Kennicott Road, has public sewer & water, and is properly zoned to provide moderate to high residential density all of which are clearly defined as Goals of the Washington State Growth Management Act ((GMA). Development of the project site into a moderate to density residential housing clearly meets the goals of GMA as summarized below:

Economic development Early and continuous GMA Goals public participation (RCW 36.70A.020) Property rights Public facilities and Permit processing Concentrated urban services Natural resource growth Historic preservation industries Sprawl reduction Shoreline management Open space and Regional transportation (RCW 36.70A.480) recreation Affordable housing Environmental protection

The apartment complex design criteria includes adequate access to meet the needs of multifamily housing, internal traffic flow geometrics to allow for emergency vehicles (e.g., fire trucks and ambulances) as well as an array of water, sewer, and utilities. Thus, the standard design criteria characteristic of high density apartment housing inherently requires a large project footprint to accommodate for the overall design needs. Given the slope of the site and copious amounts of unconsolidated fill material in the middle and northern portions of the site, development will require a "stairstep" arrangement of building pads that will require additional space and increases overall project costs. Additionally, in order to utilize the required access off of Kennicott Road, two separate ingress/egress approaches are required resulting in unavoidable impacts to wetlands. Phase I of the Jackson Villas project was designed to avoid direct wetland impacts. However, to accomplish the ultimate goal of 65 total housing units (by the overall Jackson Villas development), Phase II will require permanent wetland impacts. The need for high density apartment housing in the Chehalis area is high, and the need great. Therefore, the ten additional units proposed by Phase II is warranted due to the high need for local housing as required by GMA.

The following summarizes project needs as applicable to engineering, safety, and utilization requirements:

<u>Site Access</u>: Access to the subject site will be via two separate streets from Kennicott Road, Figure 3. Site access does not currently exist and space is needed for emergency vehicle access and internal traffic flow. The location of the wetland and associated buffer makes access without impacts unfeasible and access directly from Jackson Hwy is prohibited.

<u>Site Buildings</u>: Proposed buildings must be designed according to industry standards for apartments including positioning to allow unobstructed flow of resident and emergency vehicles. Buildings were initially positioned to avoid the wetland and wetland buffer. However, this would reduce the useable area to the very southern portion of the site. The number of buildings that this space would accommodate was approximately one-fifth (two out of ten) of what is ultimately needed, rendering the project financially unfeasible. Phase II of the proposed project includes ten buildings, makes the project financially feasible and better meets the local housing needs and minimum zoning density requirements from the City of Chehalis.

Internal Access:

Access through the apartment complex and parking is a critical factor to assure customer safety and satisfaction while allowing unobstructed passage for emergency vehicles. Regardless of building size, access must meet minimum design standards. Avoiding wetlands and wetland buffers would make the project financially unfeasible.

Stormwater:

Stormwater design requirements resulted in the need to design and construct two stormwater detention facilities to provide treatment and storage capacity for site generated stormwater. Given that the lowest point of the subject site is near Jackson Hwy, the stormwater facilities had to be placed near Jackson Hwy which will result in unavoidable impacts to wetlands and buffers. Stormwater facilities were designed to encompass the minimal amount of space and strategically placed to provide maximum effectiveness to assure downstream aquatic systems are not adversely impacted with poor water quality. In an effort to further minimize impact, the overall function of the storm ponds will continue to act similar to a wetland in regards to habitat, hydrology, and vegetation. Placing these ponds in the wetland area preserves a similar environment in the ponds themselves and minimizes the ultimate impact to the wetland.

Direct and indirect impacts to the wetland will be mitigated by ensuring no net loss of wetland

functions through purchasing credits at the Chehalis Basin Wetland Mitigation Bank.

Wetland ID	Total Wetland Area (acres)	Potential Fill in Wetland Prior to Avoiding and Minimizing (acres)	Proposed Fill in Wetland (acres)	Avoidance and Minimization
Wetland A	0.47	0.47	0.47	Access roads and apartment buildings designed to minimum standards. Entire wetland impacted.

Table 3:	Avoidance a	nd Minimization	Measures
----------	-------------	-----------------	----------

UNAVOIDABLE WETLAND IMPACT ACREAGE

Development of the subject site will result in eliminating the onsite wetland by filling the full 0.47 acres of Category III wetland (direct impact). The wetland has already incurred indirect impacts from adjacent land uses including the construction of roads on all sides that has restricted hydrology to the wetland. The wetland is currently covered in invasive vegetation and provides little habitat function or value to the surrounding landscape. The proposed direct wetland impacts can be offset by purchase of bank credits and the preservation of a higher quality wetland system within a much less impacted location, thus providing more habitat function and value than the onsite low functioning wetland currently does. Table 4 below summarizes the impacts to wetlands.

Table 4: Expected Impacts to Wetlands

Wetland ID	Wetland Area (acres)	Permanently Filled Wetland Area (acres)	Cowardin Classification	Rating ^B	HGM ^A
Wetland A	0.47	0.47	PEM1A	111	Slope

^A Hydrogeomorphic Classification

^B Washington State Wetland Rating System for Western Washington: 2014 Update

Table 5 summarizes impacts to wetlands including class, Cowardin classification, and hydrogeomorphic classification.

Classification System	Class	Area of Permanent Impacts (acres)	Total Impact (sq ft)
Washington Rating	ш	0.47	20,473
Local Jurisdiction	Ш	0.47	20,473
USFWS (Cowardin)	PEM1A	0.47	20,473
Hydrogeomorphic	Slope	0.47	20,473

Table 5: Wetland Impact Summary by Classification

IMPACTED WETLAND FUNCTIONS

Water Quality

The onsite wetland will be directly impacted, resulting in the elimination of its water quality functions. The wetland provides a moderate level of water quality functions (7 out of 9 possible on the wetland rating form). The slope wetland also drains or has unconstricted outflow due to the presence of a culvert under Jackson Highway. During high flows, the wetland hydrology eventually discharges into a tributary of Dillenbaugh Creek.

Hydrologic

The wetland provides a moderate/low level of hydrologic functions (5 out of 9 possible). Filling the wetland eliminates a minor amount of flood storage and delay but is not expected to have a significant impact on downstream hydrology. Because the wetland is on a slope and drains directly to a large culvert under Jackson Hwy, the potential for flood storage is very low. Two new stormwater ponds will hold all stormwater generated at the site and meter the outflow in a controlled manner therby reducing the potential for increasing downstream flooding issues.

Habitat

The wetland provides a low level of habitat functions (4 out of 9 possible). The wetland consists of a single Cowardin class, emergent, with little vegetative species diversity. The wetland size is also relatively small and surrounded by development offering little forage and refuge opportunities for fauna in the area.

WETLAND MITIGATION SITE SELECTION RATIONALE

The subject site is located within the service area for the Chehalis Basin Wetland Mitigation Bank. Purchasing credits is the preferred method of Washington Department of Ecology and US Army Corps of Engineers to provide mitigation for impacts to wetlands (2008 *Compensatory* *Mitigation for Losses of Aquatic Resources, Final Rule*). On-site mitigation is neither practical nor expected to have a high rate of success. Mitigating on-site would result in (1) a small, isolated wetland with limited connectivity to other wetlands, (2) would not drastically increase habitat functions, and (3) would have limited habitat potential due to the surrounding development. Because the on-site wetland is a moderate-quality Category III, purchasing credits is the most sensible method to mitigate for unavoidable impacts. The following rational was used to justify using Chehalis Basin Wetland Mitigation Bank for mitigation credit purchase:

- There are no on-site critical wetland functions that can be replaced elsewhere on-site
- On-site mitigation is neither practical nor expected to be successful
- Lost functions at the subject site wetlands will be adequately replaced at the bank

WETLAND FUNCTIONS PROVIDED at MITIGATION BANK

The Chehalis Basin Wetland Mitigation Bank is located in a very similar landscape position as the subject site, diked floodplains with alluvial soils or foothills historically and currently used for agricultural purposes. Functions provided at the Chehalis Basin Wetland Mitigation Bank are higher quality compared to wetland functions at the subject site.

The following tables, Table A.1-3, come directly from the Mitigation Banking Instrument for the Chehalis Basin Wetland Mitigation Bank and summarizes functions at the bank and anticipated change in function level when the bank is fully developed. It is clear that the bank is providing and predicted to continue to provide functions at a much higher level than the wetland at the subject site.

Function Variables	Existing Condition	Mitigation Action	Post-Construction Condition
Vegetation classes	<u>Poor</u> – Only weedy herbaceous species present.	Plant woody vegetation.	<u>Good</u> – Vegetation classes increase as shrub and forested communities establish.
Understory vegetation	<u>Poor</u> - No canopy present.	Seed native grasses.	<u>Good</u> – Understory vegetation increases as shrub and forested communities establish and understory develops.
Width ratio of wetland (flooding) to stream	<u>Good</u> – Realignment of Big Hanaford Creek has restored typical flooding extent.	Not addressed.	<u>Good</u> – Flooded wetland width remains post project implementation.
Area of inundated clay soils (also considering silty clay loam)	<u>Medium/Good</u> – Flood functions have been restored, but some ditches and pond berms remain. Ditches drain soils and berms create uplands.	Earthwork will fill ditches and remove sediment pond berms.	<u>Good</u> – No remaining uplands or artificial drainage features.

Table A.1 Water Quality Functions Assessment Summary

Function Variables	Existing Condition	Mitigation Action	Post-Construction Condition
Storage capacity	<u>Medium</u> – Site is wide and flat, but partially impaired by ditches and berms.	Earthwork will eliminate berms and fill in ditches.	<u>Good</u> – Storage capacity will be maximized.
Size ratio of wetland to basin	<u>Good</u> – All of the site is currently wetland, other than sediment pond berms and upland areas associated with ditch spoil areas.	Earthwork will enlarge wetland area slightly.	Good, Slightly <u>Improved</u> – Wetland area will be slightly increased by grading down berms and spoil areas.
Ratio of wetland to stream	<u>Medium</u> – Most of site is wetland, but sediment pond berms are oriented perpendicular to stream and relatively close, constricting flood flow.	Earthwork will remove berms that constrict flood flows.	<u>Good</u> – Ratio of wetland to stream increases, specifically removing a constriction caused by berms.
Cover by woody vegetation	<u>Poor</u> – No cover present except for a few individuals shrubs.	Plant woody vegetation.	<u>Good</u> – Woody species establish and woody cover increases, ultimately contributing approx. 75% or greater cover.

Table A.2 Hydrologic Functions Assessment Summary

Table A.3 Habitat Functions Assessment Summary

Function Variables	Existing Condition	Mitigation Action	Post-Construction Condition
Buffer condition (site perimeter)	<u>Poor</u> – No woody cover present on site perimeter.	Plant woody vegetation.	<u>Good</u> – Site perimeter condition improves as woody species establish.
Canopy closure	Poor – No woody cover present.	Plant woody vegetation.	<u>Good</u> – Canopy closure improves as woody species establish.
Number of vegetation strata	Poor – No woody shrub or tree cover present.	Plant woody vegetation.	<u>Good</u> – More vegetation strata result when woody species establish.
Number of snags	Poor – No snags or woody cover present for recruitment.	Install snags (plant woody vegetation).	<u>Good</u> – Number of snags and potential recruitment increase.
Number of LWD	Poor – No LWD or woody cover present for recruitment.	Install LWD (plant woody vegetation).	<u>Good</u> – Number of LWD and potential recruitment increase.
Vegetation interspersion	<u>Poor</u> – Only one vegetation community exists.	Plant woody vegetation.	<u>Good</u> – Vegetation interspersion increases as native emergent, shrub, and forested communities establish.

Number of hydrologic regimes	<u>Good</u> – Creek present on adjacent site, long duration inundation areas present, some areas affected by ditching and berms.	Fill ditches, flatten existing berms, restore seasonal tributary streams.	Good, Slightly Improved – Ditch drainage and berm uplands eliminated. Site contains long duration inundation areas and is adjacent to creek. Site will include segments or restored seasonal stream channels.
Number of water depth classes	<u>Good</u> – Creek present on adjacent site, long duration inundation areas present, some areas affected by ditching and berms.	Fill ditches, flatten existing berms, restore seasonal tributary streams.	<u>Good, Slightly</u> <u>Improved</u> – Ditch filling and berm leveling have only minor affect on area of inundation.
Interspersion of hydrologic regimes	<u>Medium</u> - Permanently, seasonally, and occasionally flooded regimes present.	Fill ditches, restore seasonal tributary streams.	<u>Good</u> – Seasonal tributary streams restored with high interspersion.
Species richness	<u>Poor</u> – No woody cover present, reed canarygrass monoculture.	Plant woody vegetation.	<u>Good</u> – Species richness increases as emergent, shrub and forested communities establish.
Mature woody vegetation	Poor – No woody cover present.	Plant woody vegetation.	<u>Good</u> – Mature vegetation develops from planted woody species.
Buffer condition (site perimeter)	<u>Poor</u> – No woody cover present in site perimeter.	Plant woody vegetation in site perimeter.	<u>Good</u> – Buffer condition improves as woody species establish in site perimeter.
Canopy closure	Poor – No woody cover present.	Plant woody vegetation.	<u>Good</u> – Canopy closure improves as woody species establish.
Number of vegetation strata	<u>Poor</u> – Only one vegetation community exists.	Plant woody vegetation.	<u>Good</u> – Vegetation interspersion increases as native emergent, shrub, and forested communities establish.
Corridors and connectivity (considering combination of existing and future mitigation projects)	<u>Medium</u> – Existing mitigation sites provide a 600-950 foot wide corridor of rehabilitated habitat.	Restore native vegetation communities to floodplain.	<u>Good</u> – Habitat corridor expanded to up to 2,600 feet wide.

WETLAND FUNCTIONS NOT MITIGATED at MITIGATION BANK

The Chehalis Basin Wetland Mitigation Bank site will sufficiently mitigate for all direct impacts to wetland functions incurred from the proposed project. No net loss of habitat function will result from the project proposal. The Mitigation Bank can adequately offset the moderate hydrology and low habitat functions lost from the onsite wetland impacts proposed.

PROPOSED MITIGATION CREDITS

Table 6, from the Chehalis Basin Wetland Mitigation Bank (Mitigation Bank Instrument), summarizes recommended credit ratios for purchasing credits based on the Category of wetland impacted.

Category of Impacted	Credit Recommended per Impact Acre		
Wetland			
I	Case-by-Case		
II	1.2:1		
III	1:1		
IV	0.85:1		
Critical Area Buffer	Case-by-Case		

Table 6: Credits Recommended for Wetland Impacts

Based on the Category of wetland proposed for impact (Category III) and using the ratios listed in Table 6, the Applicant is proposing the purchase of 0.47 credits (0.47 acres at a 1:1 ratio = 0.47). The purchase of 0.47 credits from Chehalis Basin Wetland Mitigation Bank will fully compensate for the quality of wetland habitat impacted at the subject site to ensure there is no net loss of ecological function within the watershed. Table 7 summarizes mitigation ratios used to calculate the number of credits required for proposed project wetland impacts.

Table 7: Mitigation Bank Credits Proposed for Use by Impact Project

Wetland	Total	Permanently	Ecology	Credit	Credit
ID	Wetland	Filled Wetland	Rating	Needed per	Proposed
	Area	Area ^A		Impact Acre	for use
	(acres)	(acres)			
Wetland	0.47	0.47	111	1:1	0.47
Α					

^A Includes direct and indirect impacts.

CREDIT PURCHASE or TRANFER TIMING

Lakewood Investors is negotiating a Buy/Sell Agreement with Chehalis Basin Wetland Mitigation Bank, operated by WCEI Chehalis MB, LLC for the purchase of mitigation credits to compensate for impacts to wetlands at the proposed Jackson Villas 4 Apartments project in Chehalis, Washington. The following schedule generally outlines the anticipated transfer of credits:

- Secure Credits with Monetary Deposit 2021
- Full Purchase of Credits 2021/2022 (following approval and permits from agencies)

Prior to impacting wetlands at the project site, the applicant will submit proof of credit purchase to all applicable local, state, and federal staff.

REFERENCES

WCEI Chehalis MD LLC. 2009 (Revised 2013). *Chehalis Basin Wetland Mitigation Bank Mitigation Banking Instrument*.

U.S. Army Corps of Engineers. Compensatory Mitigation for Losses of Aquatic Resources. 33 C.F.R. §332 (2008).

Cowardin, L.M., C. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. FWS/OBS-78/31. U.S. Department of the Interior, Fish and Wildlife Service, Office of Biological Services, Washington D.C.

Hruby, T. 2014. *Washington State Wetlands Rating System for Western Washington –2014 Update*. Washington State Department of Ecology Publication #93-74. Olympia, Washington.

Hruby, T., Harper, K., Stanley, S. 2009. *Selecting Wetland Mitigation Sites Using a Watershed Approach*. Washington State Department of Ecology Publication #09-06-032. Olympia, Washington.

Interagency Review Team for Washington State. February 19, 2009. Using Credits from Wetland Mitigation Banks: Guidance to Applicants on Submittal Contents for Bank Use Plans. Online

<http://www.ecy.wa.gov/programs/sea/wetlands/mitigation/banking/pdf/mitig_ plan_guidance.pdf> Accessed February 2021.

Natural Resource Conservation Service (NRCS). 2008. *Hydrogeomorphic Wetland Classification System: An Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service.* United States Department of Agriculture Technical Note, #190-8-76.

Natural Resource Conservation Service (NRCS). 2015. *National Hydric Soil List*. Online document http://soils.usda.gov/use/hydric/lists/state.html Accessed February 2021.
ATTACHMENT A - Project Drawings

Not to Scale

w

REFERENCE: <u>NWS-2021-369</u> APPLICANT: <u>Lakewood Investors</u>, <u>LLC</u> ADJACENT PROPERTY OWNERS: <u>See Page 2</u> LOCATION:<u>TPN 010799001000</u> Lat/Lon: <u>N46.64089, W-122.92752</u> SITE VICINTY MAP

PAGE 1 of 7 DATE: <u>August 2,2021</u>

PROPOSED PROJECT: Multi Family Residential IN: Wetland NEAR: Chehalis COUNTY/STATE: Lewis/WA

REFERENCE: <u>NWS-2021-369</u>	LOCATION: <u>TP</u>	<u>N 010799001000</u>	PROPOSED PROJECT: Multi
APPLICANT: <u>Lakewood Investors,</u>	Lat/Lon: <u>N46</u>	.64089, W-122.92752	Family Residential
LLC ADJACENT PROPERTY OWNERS:	ADJACE PAGE 2 of 7	NT OWNERS DATE: August 2,2021	IN: <u>Wetland</u> NEAR: <u>Chehalis</u> COUNTY/STATE: Lewis/WA

REFERENCE: NWS-2021-369	LOCATION: TPN 010799001000	PROPOSED PROJECT: Multi
APPLICANT: Lakewood Investors,	Lat/Lon: <u>N46.64089, W-122.92752</u>	Family Residential
LLC	SITE CONDITIONS	
ADJACENT PROPERTY OWNERS:	SHECONDITIONS	NEAR: Chehalis
See Page 2	MAP	COUNTY/STATE: Lewis/WA
	PAGE 3 of 7 DATE: August 2,2021	

REFERENCE: <u>NWS-2021-369</u> APPLICANT: <u>Lakewood Investors,</u> <u>LLC</u> ADJACENT PROPERTY OWNERS: <u>See Page 2</u>	LOCATION: <u>TPN 010799001000</u> Lat/Lon: <u>N46.64089, W-122.92752</u> WETLAND IMPACTS	PROPOSED PROJECT: <u>Multi</u> <u>Family Residential</u> IN: <u>Wetland</u> NEAR: <u>Chehalis</u> COUNTY/STATE: <u>Lewis/WA</u>
	PAGE 4 of 7 DATE: August 2,2021	

REFERENCE: <u>NWS-2021-369</u> APPLICANT: Lakewood Investors.	LOCATION: <u>TPN 010799001000</u> Lat/Lon: N46.64089, W-122.92752	PROPOSED PROJECT: <u>Multi</u> Family Residential
LLC ADJACENT PROPERTY OWNERS:	Final Site Plan	IN: <u>Wetland</u> NEAR: <u>Chehalis</u>
See Page 2	PAGE 5 of 7 DATE: <u>August 2, 2021</u>	COUNTY/STATE: <u>Lewis/WA</u>

REFERENCE: <u>NWS-2021-369</u> APPLICANT: <u>Lakewood Investors</u> ,	LOCATION: <u>TPN 010799001000</u> Lat/Lon: <u>N46.64089, W-122.92752</u>	PROPOSED PROJECT: Multi Family Residential
LLC ADJACENT PROPERTY OWNERS: See Page 2	Wetland Profile	IN: <u>Wetland</u> NEAR: <u>Chehalis</u> COUNTY/STATE: <u>Lewis/WA</u>
	PAGE 6 of 7 DATE: August 2, 2021	

REFERENCE: <u>NWS-2021-369</u> APPLICANT: <u>Lakewood Investors,</u> <u>LLC</u> ADJACENT PROPERTY OWNERS: <u>See Page 2</u> LOCATION:<u>TPN 010799001000</u> Lat/Lon: <u>N46.64089</u>, W-122.92752

SERVICE AREA MAP PAGE 7 of 7 DATE:<u>August 2,2021</u> PROPOSED PROJECT: Multi Family Residential IN: Wetland NEAR: Chehalis COUNTY/STATE: Lewis/WA

TESC NOTES:

- $\langle T1 \rangle$ INSTALL SILT FENCE. SEE DETAIL 3-4 SHEET C1.2.
- $\langle T2 \rangle$ INSTALL 100' LONG CONSTRUCTION ENTRANCE. SEE DETAIL 3-2 SHEET C1.2.
- $\overline{(T3)}$ INSTALL INLET PROTECTION TO EX CATCH BASIN. SEE DETAIL 3–5 SHEET C1.2.
- T4 INSTALL STRAW BALE BARRIER AS SHOWN AND IN ACCORDANCE WITH DETAIL 3–6 ON SHEET C1.2. BALES TO BE INSTALLED ALONG EXISTING DITCH SHOWN ON THIS SHEET. BALES WILL BE REMOVED ONCE SITE IS STABILIZED.
- $\overline{(T5)}$ INSTALL TWO LAYERS OF WATTLES AND A SWATH OF SILT FENCE AROUND THE INLET FOR CULVERT INLET PROTECTION.

DEMOLITION NOTES:

- $\langle D1 \rangle$ EX. FENCE TO BE REMOVED.
- $\langle D2 \rangle$ EX. STRUCTURE TO BE REMOVED.
- $\langle D3 \rangle$ EX. TREE TO BE REMOVED.

NOTES TO CONTRACTOR:

- 1. ALL EXPOSED SOIL SURFACES SHALL BE SEEDED WITH AN EROSION CONTROL SEED MIX OR HYDROSEEDED IF NOT WORKED WITHIN 7 CALENDAR DAYS FROM MAY 1 TO SEPTEMBER 30. SOIL SHALL BE COVERED WITHIN 2 DAYS FROM OCTOBER 1 TO APRIL 30.
- 2. SEEDED AREAS WILL BE COVERED WITH MULCH, HAY OR OTHER PROTECTIVE COVERING APPROVED BY THE ENGINEER TO PREVENT WASHOUT DURING RAIN EVENTS.
- 3. CONTRACTOR SHALL APPLY WATER TO GRAVEL SURFACES DURING CONSTRUCTION TO MINIMIZE FUGITIVE DUST.
- 4. ROUTINE INSPECTION AND MAINTENANCE OF ALL INSTALLED EROSION AND SEDIMENT CONTROL BMPS, ESPECIALLY AFTER STORMS, IS REQUIRED. 5. PERIODIC STREET CLEANING MAY BE NECESSARY TO REMOVE
- ANY SEDIMENT TRACKED OFF THE SITE. 6. IN THE EVENT PROPOSED BMPS FAIL, APPROPRIATE MEASURES MUST BE TAKEN TO STOP SEDIMENTS FROM
- ENTERING WATERWAYS. 7. NO CONSTRUCTION OR DEMOLITION WILL BE ALLOWED IN PHASE 2 AREA UNTIL STATE AUTHORIZATION.

PRELIMINARY

FOR PERMIT ONLY

LINE TABLE			
Line #	Bearing	Length	
L1	S49° 58' 51.00"W	472.03	
L2	N40°01'09.00"W	10.00	
L3	S49° 58' 51.00"W	145.84	
L4	N42°17'06.00"W	272.52	
L5	N47°40'14.69"E	543.52	
L6	N37°13′46.00"W	154.81	
L7	N48° 33' 44.00"E	171.73	
L8	S35°44'51.00"E	168.43	

CURVE TABLE			
Curve #	Radius	Length	
C1	161.44	68.03	

PRELIMINARY

FOR PERMIT ONLY

ATTACHMENT B - Wetland Delineation Report

Critical Areas Report for XXXX Jackson Hwy Chehalis, Washington

Prepared for: Lakewood Investors, LLC 12030 Sunrise Valley Dr, Suite 450 Reston, VA 20191

Project # 187.04

Prepared by: Loowit Consulting Group, LLC 312 Gray Road Castle Rock, WA 98611 360.431.5118

March 1, 2021

SIGNATURE PAGE
INTRODUCTION
Purpose and Need
Site Description
METHODS
Desktop Review
State Regulations
Federal Regulations
Local Regulations
Field Investigations
Vegetation
Soils
Hydrology
Mapping
RESULTS and DISCUSSION 8
Wetlands
Wetland Buffers
CONCLUSIONS
LIMITATIONS
REFERENCES
FIGURES
APPENDIX A - DATA FORMS 12
APPENDIX B - WETLAND RATING SUMMARY 13
APPENDIX C –CLIMATOLOGICAL DATA

Table of Contents

SIGNATURE PAGE

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned:

Timp) Hal

Timothy J. Haderly, Principal Scientist/Owner Loowit Consulting Group, LLC

INTRODUCTION

Purpose and Need

Loowit Consulting Group, LLC (LCG) was retained by Lakewood Investor, LLC (Applicant) to complete a critical areas investigation and report at XXXX Jackson Hwy (Subject Site) in Chehalis, Washington (Figure 1 & 2). The Applicant has proposed the construction of a phased multi-family residential facility including site access, street improvements, public supplied sewer/water, on-site parking, lighting and landscaping (Figure 3). Potential critical areas within the subject site prompted the City of Chehalis to request an evaluation of critical areas according to Chehalis Municipal Code (CMC) Title 17 – Division III.

Photograph 1: Subject site from Kennicott Road looking southeast.

Site Description

The subject site consists of a single parcel totaling approximately 4.32 acres of unimproved property. Site specifics include:

<u>Site Address</u> :	XXXX Jackson Hwy Chehalis, WA
<u>Current Owner</u> :	Lakewood Investors, LLC
Tax Parcel Number:	010799001000
Legal Description:	Section 3, Township 13 North, Range 2 West, W.M.
Property Size:	Approximately 4.32 acres
	2

Jurisdiction: City of Chehalis

The subject site is located southeast of Kennicott Road, northeast of Jackson Hwy, and southwest of Hosanna Ln in the southwestern portion of the City of Chehalis, Washington (Figure 1). The subject site consists of a sloped, unimproved property vegetated with a mix of pasture grass, teasel, thistles, and a few scattered willow clumps in the wetland area. There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property.

Land uses adjacent to the subject site include:

- To the South Residential and unimproved property
- To the North Residential
- To the West Residential and open space
- To the East Residential and open apace

METHODS

Desktop Review

Prior to visiting the subject site, LCG conducted a desktop review of readily available mapping resources and other pertinent information including:

- Lewis County Web Map (<u>http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm</u>). This source provided parcel information, aerial photographs, physical attributes, and other information from the Lewis County Assessor.
- US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (<u>https://www.fws.gov/wetlands/data/mapper.html</u>). This mapping source depicts wetlands and streams throughout the United States.
- US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>). This source depicts mapped soils including hydric soils throughout the United States.
- Washington Department of Natural Resources Forest Practices Application Mapping Tool (<u>https://fpamt.dnr.wa.gov/default.aspx</u>). This mapping source depicts streams and wetlands in Washington State.
- Washington Department of Fish and Wildlife Salmonscape

 (<u>http://apps.wdfw.wa.gov/salmonscape/map.html</u>). This mapping source depicts streams and fish distribution in Washington State.

 Washington Department of Fish and Wildlife Priority Habitat and Species (<u>http://apps.wdfw.wa.gov/phsontheweb/</u>). This mapping source depicts priority habitats and species throughout Washington State.

State Regulations

Wetlands are regulated by Washington Department of Ecology (Ecology) under the Water Pollution Control Act and the Shoreline Management Act. The State Environmental Policy Act (SEPA) process is also used to identify potential wetland-related concerns early in the permitting process. All proposed direct and identified indirect impacts to wetlands are reviewed and approved/denied by Ecology using the regulations previously listed.

Streams are regulated by Washington Department of Fish and Wildlife under the State Hydraulic Code, Chapter 77.55 Revised Code of Washington. Projects involving activities within, over, or beneath jurisdictional streams are subject to the Hydraulic Project Approval (HPA) permitting process administered by WDFW.

Federal Regulations

Wetlands are regulated as "waters of the United States" under Section 404 of the Clean Water Act. Section 404 regulations are administered by the US Army Corps of Engineers (USACE).

Local Regulations

Wetlands and other critical areas are regulated by Chehalis Municipal Code (CMC) Title 17 – Division III.

Field Investigations

On November 13, 2020, LCG visited the subject site to collect site information, delineate jurisdictional wetlands, and collect site data. Weather conditions at the time of the site investigation consisted of overcast skies with a high of 49.5°F and 0.01 inches of rain the previous 24 hours. Recorded climatological history from the Chehalis Airport two weeks prior to visiting the site was characterized with high temperatures ranging from 41.3 to 67.2°F and low temperatures ranging from 25.0 to 58.5°F. Total recorded precipitation two weeks prior to the site visit (October 30 – November 12) was recorded at 2.91 inches (Table 1, Appendix C).

Date	Minimum Temp (Deg F)	Maximum Temp (Deg F)	Total Precipitation (in)
10/30/2020	37.4	59.3	0.16
10/31/2020	32.9	59.3	0.01
11/1/2020	32.2	64.8	0
11/2/2020	31.0	67.2	0
11/3/2020	38.5	59.0	0.60
11/4/2020	58.5	64.0	0.33

Table 1: Weather Data a	t Chehalis Airport,	Washington.
-------------------------	---------------------	-------------

11/5/2020	46.2	59.8	0.78
11/6/2020	33.2	49.4	0.45
11/7/2020	30.3	42.2	0
11/8/2020	25.3	48.3	0
11/9/2020	25.0	41.3	0.13
11/10/2020	37.3	48.1	0.39
11/11/2020	34.2	42.2	0.05
11/12/2020	35.0	46.3	0.01
		Total:	2.91
11/13/2020	39.3	49.5	1.60

Data from Agweathernet

Site investigation work tasks included:

- Documentation of current site conditions
- Documentation of adjacent land uses
- Delineating and flagging of wetlands and streams
- Documentation of wetland/upland conditions with Test Plots

Wetlands were delineated according to methods outlined in the U.S. Army Corps of Engineers. 2010. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0)*. Data documenting vegetation, soils, and hydrology were collected and used to determine wetland and uplands at the site. A single depressional wetland (Wetland A) was located in the central portion of the subject site. Wetland boundaries were delineated using documented test plots and subsequently surveyed by Goodman Land Survey, Inc.

Vegetation

Upland vegetation at the site is a mix of grasses and weeds with a few scattered clumps of willow in the wetland area. On-site wetland areas are dominated by shore pine, reed canary grass and spiraea. Table 2 summarizes wetland and upland vegetation observed at the subject site.

Table 2: Vegetation Observed

Scientific Name	Common Name	Wetland Indicator Code
Cirsium arvense	Canada Thistle	FAC
Corylus cornuta	Beaked Hazelnut	FACU
Crataegus douglasii	Black Hawthorn	FAC
Cytisus scoparius	Scotch Broom	UPL
Dactylis glomerata	Orchard Grass	FACU
Daucus carota	Queen Anne's Lace	FACU

Dipsacus fullonum	Teasel	FAC
Fraxinus latifolia	Oregon Ash	FACW
Juncus effusus	Softrush	FACW
Phalaris arundinacea	Reed Canary Grass	FACW
Poa pratensis	Kentucky Bluegrass	FAC
Pseudotsuga menziesii	Douglas Fir	FACU
Rubus armeniacus	Himalayan Blackberry	FAC
Salix lasiandra	Pacific Willow	FACW
Schedonorus arundinaceus	Tall Fescue	FAC

Wetland Indicator Code

OBL = Obligate (>99% found in wetlands) FACW = Facultative Wetland (>67% to 99% found in wetlands)

FAC = Facultative (33% to 67% found in wetlands)

FACU = Facultative Upland (1% to <33% found in wetlands)

UPL = Obligate Upland (<1% found in wetlands)

Soils

According to the US Department of Agriculture Natural Resources Conservation Service (NRCS) Web Soil Survey for Lewis County, soils at the site are mapped as summarized in Table 3 and Figure 4).

Table 3: Soil Summary.

Soil #	Soil Name	Slope %	Hydric %
89	Galvin silt loam	0-8	15
118	Lacamas silt loam	0-3	97
194	Scamman silty clay loam	5-15	95

Historic land disturbance activities including fill placement, timber harvest, agricultural practices, and general grading may have altered natural soil conditions at the site resulting in soils that may be somewhat different than those mapped by NRCS.

Hydrology

The subject site generally slopes to the southwest into a slope wetland area in the southwestern portion of the subject site. Seasonal water drains from the wetland into a culvert beneath Jackson Hwy eventually draining into Dillenbaugh Creek, a tributary of the Chehalis River. Figure 6 depicts mapped streams to the north and south of the subject but nothing within adjacent to the subject site.

Mapping

Wetland boundary flagging, roads, property boundaries, topography, and other site features were derived from public mapping sources. Wetland flagging, topography, and property

boundaries were surveyed by Goodman Land Surveying, Inc. with additional points mapped with handheld portable GPS equipment with an implied horizontal accuracy of ± 11 feet.

RESULTS and DISCUSSION

Wetlands

A single slope wetland (Wetland A) was located in the central/southern portion of the subject site ending at the vertical embankment comprising Jackson Hwy (Figure 3). Wetland A is rated a Category III wetland (13 points) with a moderate water quality score of 7 points, a moderate hydrologic score of 5 points, and a moderate habitat score of 5 points (Table 4) according to the *Washington State Wetland Rating System for Western Washington, 2014 Update* (Appendix B).

Wetland Buffers

According to *CMC 17.23.030*, City of Chehalis requires buffers on jurisdictional wetlands depending on category and habitat score. A Category III wetland with a habitat score of 5 points (20 points under the old system) requires a 100-foot wide buffer. Table 4 summarizes wetland buffer requirements at the subject site based on *CMC 17.23.030*:

		We	tland Rating		Standard		
Wetland ID	HGM ^A	Improving Water Quality	Hydrologic	Habitat	Total	Category ^B	Buffer ^c (ft)
Wetland A	Slope	7	5	5	17	III	100

Table 4: Wetland Summary.

^A Hydrogeomorphic Classification

^B Washington State Wetland Rating System for Western Washington: 2014 Update

C CMC 17.23.030

CONCLUSIONS

A single Category III slope wetland (Wetland A) is located within the south-central portion of the subject site and drains into a culvert beneath Jackson Hwy (Figure 3). The City of Chehalis requires a 100-foot wide buffer on Category III wetlands with a moderate habitat score. As currently designed, Phase 1 of the proposed project is located outside of wetlands. The applicant has chosen to apply to fill the on-site wetland and mitigate using credits purchased from the Chehalis Basin Wetland Mitigation Bank. Phase II will be implemented after wetland impact permits are obtained from City of Chehalis, Washington Department of Ecology, and US Army Corps of Engineers.

LIMITATIONS

The findings and conclusions contained in this document were based on information and data available at the time this document was prepared and evaluated using standard Best Professional Judgment. LCG assumes no responsibility for the accuracy of information and data generated by others. Local, State, and Federal regulatory agencies may or may not agree with the findings and conclusions contained in this document.

REFERENCES

Anderson, P., Meyer, S., Olson, P., Stockdale, E. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Shorelands and Environmental Assistance Program Washington State Department of Ecology Olympia, Washington. Publication no. 16-06-029. October 2016 Final Review.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station. Technical Report Y-87-1. January 1987.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. (Publication #14-06-029). Olympia, WA: Washington Department of Ecology.

Lewis County Web Map (http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm).

U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>).

US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (<u>https://www.fws.gov/wetlands/data/mapper.html</u>).

Washington Department of Natural Resources Forest Practices Application Mapping Tool (<u>https://fpamt.dnr.wa.gov/default.aspx</u>).

Washington Department of Fish and Wildlife Salmonscape (<u>http://apps.wdfw.wa.gov/salmonscape/map.html</u>).

Washington Department of Fish and Wildlife Priority Habitat and Species (<u>http://apps.wdfw.wa.gov/phsontheweb/</u>).

FIGURES

Figure 1 – Site Location Map Figure 2 – Parcel Map Figure 3 - Site Map Figure 4 – Soils Map Figure 5 - National Wetlands inventory Map Figure 6 – Stream Map

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure 1 Site Location Map Jackson Villa #4

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure 2 Parcel Map Jackson Villa #4

REFERENCE: NWS-2021-369	LOCATION: TPN 010799001000	PROPOSED PROJECT: Multi	
APPLICANT: Lakewood Investors,	Lat/Lon: <u>N46.64089, W-122.92752</u>	Family Residential	
LLC	SITE CONDITIONS	IN: Wetland	
ADJACENT PROPERTY OWNERS:	SHECONDITIONS	NEAR: Chehalis	
See Page 2	MAP	COUNTY/STATE: Lewis/WA	
	PAGE 3 of 7 DATE: August 2,2021		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
89	Galvin silt loam, 0 to 8 percent slopes	3.5	77.5%						
118	Lacamas silt loam, 0 to 3 percent slopes	0.0	0.5%						
194	Scamman silty clay loam, 5 to 15 percent slopes	1.0	22.0%						
Totals for Area of Interest		4.5	100.0%						

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure 4 Soils Map Jackson Villa #4

APPENDIX A - DATA FORMS

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	ounty: <u>Chehal</u>	is/LewisSampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC	State: W/		State: W	A Sampling Point: <u>TP-1</u>
Investigator(s): T. Haderly	Section, Township,		on, Township	o, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace	Local relief: Sloped			Slope (%): <u>0-3%</u>
Subregion (LRR): A	Lat: <u>46.64</u> 1	1101	_ Long: <u>-122.</u>	927069 Datum: WGS84
Soil Map Unit Name: <u>#89 Galvin silt loam</u>		-	N	IWI classification: PEM1A
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No∐ (If	no, explain Remarks.)
Are Vegetation , Soil , or Hydrology significantly	y disturbed?	Ar	rea "Normal (Circumstances" present? Yes 🖄 No
Are Vegetation, Soil, or Hydrology naturally p	roblematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing s	sampling po	oint locatio	ons, transects, important features, etc.
Hydrophytic Vegetation Present? Yes 🛛 No [
Hydric Soils Present? Yes 🛛 No [Is the Sa	mpled Area	
Wetland Hydrology Present? Yes 🛛 No [within a	welland?	
Remarks:				
VEGETATION (Use scientific names)				1
Trop Stratum (Diat size 20 ft radius)	Absolute	Dominant	Indicator	Dominance Test Worksheet
	-70 Cover	opecies?	Status	Number of Dominant Species
1.	<u> </u>	·		That Are OBL EACW or EAC: (A)
2.	<u> </u>			
3.	<u> </u>			Total Number of Dominant
4Tatal Coveri				Species Across All Strata:
Total Cover:	<u> </u>			100 (A/P)
<u>Sapling/Shrub Stratum</u> (Plot size: <u>5 f</u> t. radius)				Percent of Dominant Species (A/B) That Are OBL, FACW, or FAC
1	%			Prevalence Index worksheet
2	%			Total % Cover of: Multiply by:
3	%			OBL species 0 x 1= 0
4	%			FACW species0 x 2=0
5	<u>%</u>			FAC species $0 \times 3 = 0$
I otal Cover:	%			FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: <u>5</u> ft radius)	10001			UPL species $0 \times 5 = 0$
1. Phalaris arundinacea	100%	yes	FACW	Column Totals: 0 (A) 0 (B)
2.	%			Prevalence Index = B/A=
3	%			Hydrophytic Vegetation Indicators:
4.	%			☐ 1 – Rapid Test for Hydrophytic Vegetation
				\square
5	%			3 - Prevalence Index is $\leq 3.0^{\circ}$
6.	%			4 - Morphological Adaptations ¹ (Provide supporting data In Remarks or on a separate sheet)
· /.	<u>%</u>			
8	<u>%</u>			Wetland Non-Vascular Plants'
Total Cover:	100%			Problematic Hydrophytic Vegetation (Explain)
	0/			Indicators of hydric soil and watland hydrolery
1	<u> </u>			Must be present, upless disturbed or problematic
Z	<u> </u>			iniust de present, uniess disturbed or proplematic.
Total Cover:	%			
% Bare Ground in Herb Stratum <u>0%</u>				Hydrophytic Vegetation Present? Yes⊠ No⊡
Remarks:				

SOIL

Profile Description: (Describe to the dept	h needed to document	the indicator or confirm	m the absence	e of indicators.)	
Depth Matrix	Red	ox Features			
(inches) Color (moist) %	Color (moist)	% Type ¹ L	_OC ²	Texture	Remarks
0-18 10YR3/3 80%	7.5YR4/4 2	20% D	М	Silt Loam	
<u>%</u>		<u>%</u>			
<u> </u>		<u>%</u>			
<u></u>		<u></u>			
<u> </u>		<u>%</u>			
<u>%</u>		%			
<u>%</u>		%			
¹ Type: C=Concentration, D=Depletion, RM	1=Reduced Matrix, CS=0	Covered or Coated Sand	Grains. ² Loca	ation: PL=Pore Lining,	M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless otherwise	e noted.)	Indicat	tors for Problematic I	lydric Soils
Listosal (A1)	Sandy Redox (S5)			MUCK (A10)	
				Shallow Dark Surface	(TF12)
☐ Black Histic (A3)	Loamy Mucky Miner	al (F1) (except MLRA 1)	er (Explain in Remarks)	(
Hydrogen Sulfide (A4)	Loamy Gleved Matri	x (F2)	, _	· · · · /	
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)			
Thick Dark Surface (A12)	Redox Dark Surface	e (F6)			
Sandy Mucky Minerals (S1)	Depleted Dark Surfa	ice (F7)	³ Indicato	ors of hydrophytic vege	tation and
Sandy Gleyed Matrix (S4)	Redox Depressions	(F8)	Wet	land hydrology must be	present
Restrictive Layer (if present):	-			, ,,	•
Туре:			Hydric Soil	Present?	
Depth (inches):					Yes NO
Bemarke:					
Remarks.					
					,
HYDROLOGY					
Wetland Hydrology Indicators:				Secondary Indicators	
Drimony Indiantors (min. of one required; ch	alk all that apply)			(2 or more required)	
	eck all that apply)			Water Stained Leav	(oc (P0)
Surface Water (A1)	□ Water-Stained Leav	es (B9) (excent MI RA 1	1 2 44 & 4B)		d 4 B)
\square High Water Table (A2)	Salt Crust (B11)		., _, ., ., ., ., .,	Drainage Patterns	B10)
\boxtimes Saturation (A3)	Aquatic Invertebrate	s (B13)		Dry-Season Water	Table (C2)
□ Water Marks (B1)	Hydrogen Sulfide O	dor (C1)		Saturation Visible o	n Aerial Imagery (C9)
Sediment Deposits (B2)	Oxidized Rhizosphe	res along Living Roots (C3)	Geomorphic Positio	on (D2)
Drift Deposits (B3)	Presence of Reduce	ed Iron (C4)	,	☐ Shallow Aquitard (□)3)
☐ Algal Mat or crust (B4)	Recent Iron Reducti	on in Tilled Soils (C6)		FAC-Neutral Test (D5)
☐ Iron Deposits (B5)	Stunted or Stressed	Plants (D1) (LRR A)		Raised Ant Mounds	(D6) (LRR A)
Surface Soil Cracks (B6)	Other (Explain in Rei	marks)		Frost-Heave Humm	ocks (D4)
☐ Inundation Visible on Aerial Imagery (B7)				
			1		
Field Observations:		(abaa); 1.0			
Water Table Present? Yes X	No Depth (Ir	icnes): <u>1-2</u>	Wotland Hy	drology Procont?	
Saturation Present? Yes X	No Depth (Ir	iches): <u>o</u> iches): surface		urology Fresent?	Yes 🕅 No 🗌
(Includes Capillary fringe)		<u>oundoo</u>			
Describe Recorded Data (Stream gauge, mo	onitoring well, aerial phot	os, previous inspections), if available:		
	- '				

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: <u>Chehal</u>	is/Lewis Sampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-2
Investigator(s): T. Haderly		Sectio	on, Township	, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	oped	Slope (%): 0-3%
Subregion (LRR): A	Lat: 46.641	73	Long:-122.	926865 Datum: WGS84
Soil Map Unit Name: #89 Galvin silt loam			N	IWI classification: none
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No (If	no, explain Remarks.)
Are Vegetation, Soil, or Hydrology significantly	y disturbed?	Ar	ea "Normal (Circumstances" present? Yes⊠ No⊡
Are Vegetation, Soil, or Hydrology naturally pi	oblematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing s	ampling po	int locatio	ons, transects, important features, etc.
Hydrophytic Vegetation Present? Yes 🛛 No []	ls the Sa	mplad Araa	·····, ·········, ····
Hydric Soils Present? Yes 🗌 No 🛛	\triangleleft	within a	Motland?	
Wetland Hydrology Present? Yes 🗌 No 🛛	\triangleleft	within a		
Remarks:				
VEGETATION (Use scientific names)				
	Absolute	Dominant	Indicator	Dominance Test Worksheet
<u>Iree Stratum</u> (Plot size: <u>30</u> ft radius)	% Cover	Species?	Status	
1.	%			That Are OBL FACW or FAC:
2	%			That Ale Obl., FACW, of FAC.
3	%			Total Number of Dominant
4	%			Species Across All Strata: (B)
Total Cover:	%			
Sapling/Shrub Stratum (Plot size: 5 ft_radius)				Percent of Dominant Species (A/B)
1.	%			Prevalence Index worksheet
2	%			Total % Cover of: Multiply by:
3.	%			OBL species $0 \times 1 = 0$
4.	%			FACW species $0 \times 2 = 0$
5.	%			FAC species $0 \times 3 = 0$
Total Cover:	%			FACU species 0 x 4= 0
Herb Stratum (Plot size: 5 ft radius)				UPL species $0 \times 5 = 0$
1. Dipsacus fullonum	90%	ves	FAC	Column Totals: 0 (A) 0 (B)
2. Schedonorus arundinaceus	10%	no	FAC	Prevalence Index = B/A=
3. Poa pratensis	10%	no	FAC	Hydrophytic Vegetation Indicators:
4.				\square 1 – Rapid Test for Hydrophytic Vegetation
	%			\boxtimes 2 – Dominance Test is >50%
5.	%			\square 3 - Prevalence Index is <3.0 ¹
6.	%			4 - Morphological Adaptations ¹ (Provide
7	%			Supporting data in Remarks or on a separate sheet)
8	%			Wetland Non-Vascular Plants ¹
Total Cover	110%			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: <u>30</u> ft radius)	11070			
1	%			¹ Indicators of hydric soil and wetland hydrology
2	%			Must be present, unless disturbed or problematic.
Total Cover:	%			
% Bare Ground in Herb Stratum 0%				Hydrophytic Vegetation Present? Ves⊠ No⊡
Remarks:				

SOIL

Profile Description: (Describe to the dep	th needed to docu	ment the indi	cator or confir	m the	absence of indicators.)	
Depth Matrix		Redox Featu	res			
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
<u>0-18</u> <u>10YR5/3</u> <u>100%</u>		<u>%</u>			Silt Loam	
		<u>%</u>				
<u> </u>		<u> </u>			<u> </u>	
		<u> </u>				
		%				
<u> </u>		%				
		%				
¹ Type: C=Concentration, D=Depletion, R	M=Reduced Matrix,	CS=Covered	or Coated Sand	l Grair	ns. ² Location: PL=Pore Linin	g, M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless othe	rwise noted.			Indicators for Problematic \Box_{2} on Muck (A10)	c Hydric Soils
Histic Enipedon (A2)	Stripped Matrix	(S6)			Red Parent Material (TE2	2)
		((00)			Very Shallow Dark Surfac	., ce (TF12)
☐ Black Histic (A3)	Loamy Mucky	Mineral (F1) (except MLRA 1	1)	Other (Explain in Remark	s)
☐ Hydrogen Sulfide (A4)	Loamy Gleyed	Matrix (F2)				
Depleted Below Dark Surface (A11)	Depleted Matri	x (F3)				
Thick Dark Surface (A12)	🗌 Redox Dark Su	urface (F6)				
Sandy Mucky Minerals (S1)	Depleted Dark	Surface (F7)			³ Indicators of hydrophytic ve	getation and
Sandy Gleyed Matrix (S4)	Redox Depress	sions (F8)			Wetland hydrology must	be present
Restrictive Layer (if present):						
Туре:				Ну	dric Soll Present?	
Depth (inches):						
Remarks:						
					O	_
wetland Hydrology Indicators:					(2 or more required)	S
Primary Indicators (min. of one required: ch	eck all that apply)					
· · · · · · · · · · · · · · · · · · ·					 ☐ Water Stained Le	aves (B9)
Surface Water (A1)	Water-Stained	Leaves (B9) (except MLRA	1, 2, 4	A, & 4B) (MLRA 1, 2, 4A, a	and 4B)
High Water Table (A2)	☐ Salt Crust (B11)	1)			Drainage Pattern	s (B10)
Saturation (A3)	Aquatic Inverte	brates (B13)			🗌 Dry-Season Wate	er Table (C2)
☐ Water Marks (B1)	Hydrogen Sulfi	de Odor (C1)			Saturation Visible	e on Aerial Imagery (C9)
Sediment Deposits (B2)	Oxidized Rhizo	spheres along	g Living Roots (C3)	🗌 Geomorphic Posi	ition (D2)
Drift Deposits (B3)	Presence of Re	educed Iron (C	24)		Shallow Aquitard	(D3)
Algal Mat or crust (B4)	Recent Iron Re	eduction in Till	ed Soils (C6)		FAC-Neutral Test	t (D5)
Iron Deposits (B5)	Stunted or Stre	essed Plants (D1) (LRR A)		Raised Ant Moun	ds (D6) (LRR A)
Surface Soil Cracks (B6)	☐Other (Explain i	in Remarks)			Frost-Heave Hum	nmocks (D4)
Inundation Visible on Aerial Imagery (B7	<i>`</i>)					
Field Observations:						
Surface Water Present? Yes □	No 🕅 🛛 Der	oth (Inches):				
Water Table Present? Yes	No 🛛 Dep	oth (Inches):		Wet	land Hydrology Present?	
Saturation Present? Yes	No 🛛 Dep	oth (Inches):				Yes 🗌 No 🖂
(Includes Capillary fringe)						
Describe Recorded Data (Stream gauge, m	onitoring well, aeria	l photos, prev	ous inspections	s), if av	/ailable:	
Remarks:						

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: <u>Chehal</u>	is/LewisSampling Date: 11/13/2020
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-3
Investigator(s): T. Haderly		Sectio	on, Township	o, Range: Section 3, Township 13 North, Range 2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): <u>0-3%</u>
Subregion (LRR):A	Lat: 46.609	926	_Long: <u>-122.</u>	.927337 Datum: WGS84
Soil Map Unit Name: #89 Galvin silt loam			N	IWI classification: PEM1A
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No (If	no, explain Remarks.)
Are Vegetation, Soil, or Hydrology significantly	/ disturbed?	Ar	ea "Normal (Circumstances" present? Yes⊠ No⊡
Are Vegetation, Soil, or Hydrology naturally pr	oblematic?	(If need	led, explain a	any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing s	ampling po	int locatio	ons, transects, important features, etc.
	¬			
Hydrophylic Vegetation Present? Yes 🖾 No		Is the Sa	mpled Area	
Hydric Solis Fresent? Yes No L		within a	Wetland?	Yes⊠ No⊡
VEGETATION (Use scientific names)	Absolute	Dominant	Indicator	Dominance Test Worksheet
Tree Stratum (Plot size 30 ft radius)	% Cover	Species?	Statue	
	70 COVEI	Opecies :	Status	Number of Dominant Species 2 (A)
1.	70			That Are OBL_EACW_or EAC: (A)
2.	<u>%</u>			
3.	<u>%</u>			Total Number of Dominant
4	<u>%</u>			Species Across All Strata:
I otal Cover:	%			
				Percent of Dominant Species <u>100</u> (A/B)
Sapling/Shrub Stratum (Plot size: 5 ft_radius)				That Are OBL_FACW_or FAC
1 Salix lasiandra	10%	Ves	FACW	Prevalence Index worksheet
2	<u> </u>	yes	17.00	Total % Cover of Multiply by
3	%			$\frac{\text{OBL species}}{\text{OBL species}} = 0 \qquad \text{x 1=} 0$
л	<u> </u>			$\frac{1}{1} = \frac{1}{1} = \frac{1}$
				$1 \text{ACW species} \qquad 0 \qquad x^2 = 0$
J	10%			$1 \text{AC species} \qquad 0 \qquad x $
Herb Stretum (Diet eize: 5 ft rediue)	10 %			$\frac{1}{10}$
<u>Herb Stratum</u> (Plot size, <u>5</u> it radius)	1000/			$\begin{array}{c c} OPL \text{ species} & \underline{0} & \underline{x} \text{ 5-} & \underline{0} \\ Calumn Tatalac & \underline{0} & (A) & \underline{0} & (B) \end{array}$
	100%	yes	FACW	Column Totals: U (A) U (B)
2.	%			Prevalence Index = B/A=
3.	%			Hydrophytic Vegetation Indicators:
4.	%			1 – Rapid Test for Hydrophytic Vegetation
	,,,			≥ 2 – Dominance Test is >50%
5	%			\square 3 - Prevalence Index is $\leq 3.0^1$
6.	%			4 - Morphological Adaptations ¹ (Provide
	70			supporting data In Remarks or on a separate sheet)
7	%			
8	%			Wetland Non-Vascular Plants ¹
Total Cover:	100%			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: <u>30</u> ft radius)				
1	%			¹ Indicators of hydric soil and wetland hydrology
2.	%			Must be present, unless disturbed or problematic.
Total Cover:	%			
				Hydrophytic Vegetation Present?
% Bare Ground in Herb Stratum 0%				Yes⊠ No⊡
Remarks:				

SOIL

Profile Description: (Describe to the dep	th needed to docur	ment the ind	cator or cont	irm the	e absence of indicators.)		
Depth Matrix		Redox Featu	ires				
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
<u>0-18 10YR3/3 80%</u>	7.5YR4/4	20%	D	Μ	Silt Loam		
<u> </u>		<u>%</u>					
		<u> % </u>					
		<u> </u>					
<u> </u>		<u> </u>					
<u> </u>		%					
%		%					
¹ Type: C=Concentration, D=Depletion, RM	/I=Reduced Matrix,	CS=Covered	or Coated Sa	nd Grair	ns. ² Location: PL=Pore Linin	g, M=Matrix	
Hydric Soil Indicators: (Applicable to all	LRRs, unless othe	rwise noted.			Indicators for Problemation	c Hydric Soils	
Li Histosal (A1)	Sandy Redox (55) (S6)			2 cm Muck (A10) Red Parent Material (TE)))	
		(30)			Very Shallow Dark Surface	-) ce (TF12)	
☐ Black Histic (A3)	Loamy Mucky I	Mineral (F1) (except MLRA	(1)	Other (Explain in Remark	() () () () () () () () () () () () () (
Hydrogen Sulfide (A4)	Loamy Gleved	Matrix (F2)	•	,	_ 、 ;		
Depleted Below Dark Surface (A11)	Depleted Matrix	x (F3)					
Thick Dark Surface (A12)	Redox Dark Su	Irface (F6)					
Sandy Mucky Minerals (S1)	Depleted Dark	Surface (F7)			³ Indicators of hydrophytic ve	detation and	
☐ Sandy Gleyed Matrix (S4)	Redox Depress	sions (F8)			Wetland hydrology must	be present	
Restrictive Layer (if present):						- -	
Туре:				Hy	dric Soil Present?		
Depth (inches):						Yeski no	
Bemarka:							
Remarks.							
						· · · ·	
HYDROLOGY							
Wetland Hydrology Indicators:					Secondary Indicator	s	
Drimony Indiantors (min. of one required; ch	ack all that apply)				(2 or more required)		
Primary indicators (min. of one required; ch	eck all that apply)					(P0)	
Surface Water (A1)	□ Water-Stained	Leaves (B9)	excent MI R	1 2 4		aves (B9)	
\square High Water Table (A2)	Salt Crust (B11)	except men	· ·, <u>-</u> , -	Drainage Pattern	s (B10)	
Saturation (A3)	Aquatic Inverte	, brates (B13)		Dry-Season Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfi	de Odor (C1)			Saturation Visible	e on Aerial Imagery (C9)	
Sediment Deposits (B2)	Oxidized Rhizo	spheres alon	g Living Roots	s (C3)	Geomorphic Pos	ition (D2)	
Drift Deposits (B3)	Presence of Re	educed Iron ((C4)	()	 ☐ Shallow Aquitard	(D3)	
Algal Mat or crust (B4)	Recent Iron Re	duction in Till	ed Soils (C6)		☐ FAC-Neutral Tes	t (D5)	
☐ Iron Deposits (B5)	Stunted or Stre	ssed Plants (D1) (LRR A)		☐ Raised Ant Mour	ids (D6) (LRR A)	
□ Surface Soil Cracks (B6)	Other (Explain i	n Remarks)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		☐ Frost-Heave Hun	nmocks (D4)	
☐ Inundation Visible on Aerial Imagery (B7)	,					
Field Observations:							
Surrace water Present? Yes 🖂		otn (Inches):	<u>1-2</u>	14/-			
Saturation Present? Yes X		oth (Inches):		vve	tiand Hydrology Present?		
(Includes Capillary fringe)	По П рер		surrace	Ì			
Describe Recorded Data (Stream gauge, m	onitoring well, aerial	l photos, prev	ious inspectio	ns), if a	vailable:		
Remarks:							
WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: Chehal	is/Lewis Sampling Date: 11/13/2020	
Applicant/Owner: Lakewood Investors, LLC			State: W	A Sampling Point: TP-4	
Investigator(s): T. Haderly		Sectio	on, Township	o, Range: <u>Section 3, Township 13 North, Range</u>	2 West
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI	loped	Slope (%): <u>0-3%</u>
Subregion (LRR):A	Lat: 46.640)792	_Long: <u>-122</u>	927243 Datum: WGS84	
Soil Map Unit Name: <u>#89 Galvin silt loam</u>			N	IWI classification: <u>none</u>	
Are climatic / hydrologic conditions on the site typical for	or this time of	year? Yes⊠	No🗌 (If	no, explain Remarks.)	
Are Vegetation, Soil, or Hydrology significantly	y disturbed?	Ar	ea "Normal	Circumstances" present? Yes 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology naturally pl	oblematic?	(If need	led, explain a	any answers in Remarks.)	
SUMMARY OF FINDINGS – Attach site map	showing s	ampling po	oint locatio	ons, transects, important features, etc.	
Hydrophytic Vegetation Present? Veg M No	3 -			-, · · · · · · · · · · · · · · · · · · ·	
Hydrophylic Vegetallon Fresent? Yes No L		Is the Sa	mpled Area		
Wetland Hydrology Dropont2 Veg Veg	N 7	within a	Wetland?	Yes⊡ No⊠	
Remarks:					
l					
VEGETATION (Use scientific names)					
· · ·	Absolute	Dominant	Indicator	Dominance Test Workshoot]
Trop Stratum (Plot size:20 ft radius)		Species?	Statuc	Dominance rest worksheet	
		Species	Status	Number of Dominant Species	(4)
1.	<u> </u>			That Are OBL_EACW_or EAC:	(A)
2.	<u>%</u>				
3.	<u>%</u>			Total Number of Dominant	
4.	<u>%</u>			Species Across All Strata	(B)
I otal Cover:	%				
				Percent of Dominant Species 100	(A/B)
Sapling/Shrub Stratum (Plot size: 5 ft_radius)				That Are OBL FACW or FAC	
1	%			Prevalence Index worksheet	
2	%			Total % Cover of Multiply b	w.
3	%			OBL species 0 x 1=	0
<u> </u>	%			EACW species 0 x 2=	0
5	<u> %</u>			FAC species 0 x 3=	0
Total Cover:	<u> </u>			$\frac{1}{1} = \frac{1}{1} = \frac{1}$	0
Herb Stratum (Plot size: 5 ft radius)	70				0
1 Schodonorus arundinacous	70%	VOS	FAC	$\begin{array}{c} 0 \\ \text{Column Totals:} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 (B)
2 Poo protonoio	20%	<u>yes</u>	FAC		0 (В)
	20%	110	FAC	Prevalence index – D/A–	
	20%	<u> </u>	FAC	Hydrophytic vegetation indicators:	
^{4.} Dipsacus fullonum	10%	no	FAC	I – Rapid Test for Hydrophylic Vegetalic	חכ
F	0/			\square 2 – Dominance Test is >50%	
0	%			J - Flevalence index is ≤3.0'	
υ.	%			4 - Information data in Demarka an array	oroto chast
7	0/				arate sheet)
1	<u> </u>				
0	<u>%</u>				(mlair)
I otal Cover:	120%			Problematic Hydrophytic Vegetation' (E)	(piain)
voody vine Stratum (Plot size: 30 ft radius)	0/				
1	<u>%</u>			Indicators of hydric soil and wetland hydrolog	y
۷	%			IVIUST DE PRESENT, UNIESS DISTURDED OF PROBLEMA	auc.
Total Cover:	%				
				Hydrophytic Vegetation Present?	
% Bare Ground in Herb Stratum 0%				Yes	
Remarks:					
nonuno.					

SOIL

	th needed to document the		m the absend	e of Indicators.)	
Depth Matrix	Redox	Features			
(inches) Color (moist) %	Color (moist) %	Type ¹ I	LOC ²	Texture	Remarks
<u>0-18</u> 10YR5/3 100%		%		Silt Loam	
		<u>%</u>			
<u> </u>		<u>%</u>	·		
	·	<u>%</u>			
<u> </u>		%			
<u>%</u>		%			
%		%			
¹ Type: C=Concentration, D=Depletion, R	/I=Reduced Matrix, CS=Cov	rered or Coated Sand	Grains. ² Loc	ation: PL=Pore Linin	g, M=Matrix
Hydric Soil Indicators: (Applicable to all	LRRs, unless otherwise n	oted.)		tors for Problemation	: Hydric Soils
Histosal (A1)	Sandy Redox (S5)			n Muck (A10) Derent Meterial (TE2	N
				Shallow Dark Surface	. <i>)</i> ce (TF12)
🔲 Black Histic (A3)	Loamy Mucky Mineral	(F1) (except MLRA 1) 🗌 Othe	er (Explain in Remark	s)
Hydrogen Sulfide (A4)	Loamy Gleved Matrix (F2)	, _		,
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	,			
Thick Dark Surface (A12)	Redox Dark Surface (F	6)			
Sandy Mucky Minerals (S1)	Depleted Dark Surface	(F7)	³ Indicat	tors of hvdrophvtic ve	detation and
Sandy Gleyed Matrix (S4)	Redox Depressions (F	B)	We	tland hvdrology must	be present
Restrictive Layer (if present):		· ·		, ,,	
Туре:			Hydric Soi	il Present?	
Depth (inches):					Yes NOK
Bemarka:					
Itemarks.					
HYDROLOGY					
Wetland Hydrology Indicators:				Secondary Indicator	S
Primary Indicators (min. of one required: ch	eck all that apply)			(2 or more required)	
	sok all that apply)				aves (RQ)
Surface Water (A1)	Water-Stained Leaves	(B9) (except MLRA	1. 2. 4A. & 4B	(MLRA 1. 2. 4A.	
High Water Table (A2)	Salt Crust (B11)	() (-, _,,	Drainage Pattern	and 4B)
Saturation (A3)					and 4B) s (B10)
		B13)		Dry-Season Wate	and 4B) s (B10) er Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor	B13) · (C1)		Dry-Season Wate	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9)
Sediment Deposits (B2)	 Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres 	B13) [·] (C1) ⊱along Living Roots (⁽	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	 Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I 	B13) [·] (C1) ₃ along Living Roots (^ı ron (C4)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4)	 Aquatic invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction 	B13) · (C1) s along Living Roots (v ron (C4) in Tilled Soils (C6)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Place 	B13) · (C1) · along Living Roots (· ron (C4) in Tilled Soils (C6) ants (D1) (LRR A)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Mount 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Pl. Other (Explain in Rema 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) mocks (D4)
 Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) 	 Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI. Other (Explain in Rema) 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7	 Aquatic invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI. Other (Explain in Rema) 	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Deposit2	Aquatic invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed Pl Other (Explain in Rema)	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks)	C3)	 Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun 	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch No Depth (Inch	B13) (C1) along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es):	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tess Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch	B13) • (C1) • along Living Roots (• ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) 	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Water Table Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Yes □	Aquatic Invertebrates (Hydrogen Sulfide Odor Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Image: Depth (Inch Image: Depth (Image: Depth Image: Depth (Image: Depth Image: Depth I	B13) • (C1) • along Living Roots (* ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es):	C3)	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Water Table Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m)	No No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Image: Depth (Inch No Image) No Image: Depth (Inch No Image) Onitoring well, aerial photos	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
□ Water Marks (B1) □ Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes □ Saturation Present? Yes □ (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	Aquatic Invertebrates (Hydrogen Sulfide Odoi Oxidized Rhizospheres Presence of Reduced I Recent Iron Reduction Stunted or Stressed PI Other (Explain in Rema) No Depth (Inch No Depth (Inch No Depth (Inch onitoring well, aerial photos	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No I Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) · (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy s), if available:	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) (C1) s along Living Roots (ron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or crust (B4) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7 Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (Includes Capillary fringe) Describe Recorded Data (Stream gauge, m Remarks:	No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch No Depth (Inch	B13) · (C1) s along Living Roots (lron (C4) in Tilled Soils (C6) ants (D1) (LRR A) rks) es): es): , previous inspections	C3) Wetland Hy	Dry-Season Wate Saturation Visible Geomorphic Posi Shallow Aquitard FAC-Neutral Tes Raised Ant Moun Frost-Heave Hun	and 4B) s (B10) er Table (C2) e on Aerial Imagery (C9) tion (D2) (D3) t (D5) ds (D6) (LRR A) nmocks (D4) Yes □ No ⊠

APPENDIX B - WETLAND RATING SUMMARY

RATING SUMMARY – Western Washington

Name of wetland (or	ID #):	Wetland "A	Α"					Date of site visit: <u>11/13/2020</u>
Rated by T. Hader;y	,		. Tr	ained by E	cology?≊	Yes□	No	Date of training Dec-14
HGM Class used for	r rating	Slope			Wetlan	d has n	nultiple	e HGM classes?□ Yes ∞ No
NOTE: Fo	NOTE: Form is not complete with out the figures requested (<i>figures can be combined</i>). Source of base aerial photo/map <u>Google Earth</u>							
OVERALL WETLA	ND CA	TEGORY	III	(based on	functions	∞ or s	pecial	characteristics □)
1. Category of v	vetland	d based on		IS				
		Category	I - Total score	= 23 - 27			5	Score for each
		Category	II - Total score	e = 20 - 22			f	unction based
	Х	Category	III - Total sco	re = 16 - 19)			on three
		Category	IV - Total sco	re = 9 - 15			l r	ratings
•		_ 0 ,					(order of ratings
	Im	orovina	Hydrologic	Habitat			i	is not
FUNCTION	Wate	er Quality	, ,				i	important)
		List app	propriate rating	q (H, M, L)				1
Site Potential		M	. м	L			g	9 = H. H. H
Landscape Potential		М	1	М			8	3 = H H M

/alue	Н	М	L	Total
Score Based on Ratings	7	5	4	16

on three ratings (order of ratings is not important) 9 = H, H, H 8 = H, H, M 7 = H, H, L 7 = H, H, L 7 = H, M, M 6 = H, M, L 6 = M, M, M 5 = H, L, L 5 = M, M, L 4 = M, L, L 3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	Category
Estuarine	
Wetland of High Conservation Value	
Bog	
Mature Forest	
Old Growth Forest	
Coastal Lagoon	
Interdunal	
None of the above	х

Maps and Figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (<i>can be added to another figure</i>)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (<i>can be added to another figure</i>)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	A3
Hydroperiods	H 1.2	A1
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	A1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	۸1
(can be added to another figure)		
Boundary of area within 150 ft of the wetland (can be added to another figure)	S 2.1, S 5.1	A1
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	Δ2

Wetland name or number

polygons for accessible habitat and undisturbed habitat		~~ <u>~</u>
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	A4
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	A5

HGM Classification of Wetland in Western Washington

For questions 1 -7, the criteria described must apply to the entire unit being rated. If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1 - 7 apply, and go to Question 8.

- 1. Are the water levels in the entire unit usually controlled by tides except during floods?
 - NO go to 2
 YES the wetland class is Tidal Fringe go to 1.1
 - 1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
 - NO Saltwater Tidal Fringe (Estuarine)
 YES Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

- NO go to 3
 YES The wetland class is Flats If your wetland can be classified as a Flats wetland, use the form for *Depressional* wetlands.
- 3. Does the entire wetland unit meet all of the following criteria?
 - The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
 - At least 30% of the open water area is deeper than 6.6 ft (2 m).
 - NO go to 4
 YES The wetland class is Lake Fringe (Lacustrine Fringe)
- 4. Does the entire wetland unit **meet all** of the following criteria?
 - The wetland is on a slope (*slope can be very gradual*),
 - The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
 - The water leaves the wetland **without being impounded**.
 - NO go to 5

YES - The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

5. Does the entire wetland unit **meet all** of the following criteria?

- The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,
- The overbank flooding occurs at least once every 2 years.
- NO go to 6
 YES The wetland class is Riverine

NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding.

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO - go to 7
 YES - The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO - go to 8
 YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

Wetland name or number

SLOPE WETLANDS		
Water Quality Functions - Indicators that the site functions to improve water	quality	
S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical dro elevation for every 100 ft of horizontal distance)	op in	
Slope is 1% or less poir	nts = 3	0
Slope is > 1% - 2% poir	nts = 2	0
Slope is > 2% - 5% poir	nts = 1	
Slope is greater than 5% poir	nts = 0	
S 1.2. <u>The soil 2 in below the surface (or duff layer)</u> is true clay or true organic		0
(use NRCS definitions): Yes = 3	No = 0	U
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. <i>Der</i> <i>means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed</i> <i>mowed and plants are higher than 6 in.</i>	nse ' or	
Dense, uncut, herbaceous plants > 90% of the wetland area poir	nts = 6	6
Dense, uncut, herbaceous plants > ½ of area poir	nts = 3	-
Dense, woody, plants > ½ of area poir	nts = 2	
Dense, uncut, herbaceous plants > ¼ of area poir	nts = 1	
Does not meet any of the criteria above for plants poir	nts = 0	
Total for S 1 Add the points in the boxes	above	6

Rating of Site Potential If score is:
12 = H
6 - 11 = M
0 - 5 = L
Record the rating on the first page

S 2.0. Does the landscape have the potential to support the water quality function of the site?			
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in			
land uses that generate pollutants? Yes = 1 No = 0			
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1?			
Other Sources Yes = 1 No = 0			
Total for S 2 Add the points in the boxes above	1		

Rating of Landscape Potential If score is: \square 1 - 2 = M \square 0 = L

S 3.0. Is the water quality improvement provided by the site valuable to society? S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, 0 lake, or marine water that is on the 303(d) list? Yes = 1 No = 0 S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? 1 At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0 S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in 2 which the unit is found? Yes = 2 No = 0Total for S 3 Add the points in the boxes above 3 Rating of Value If score is: \square 2 - 4 = H \square 1 = M \square 0 = L Record the rating on the first page

Record the rating on the first page

Wetland name or number

SLOPE WETLANDS			
Hydrologic Functions - Indicators that the site functions to reduce flo	oding and stream er	osion	
S 4.0. Does the site have the potential to reduce flooding and stream erosion?			
S 4.1. Characteristics of plants that reduce the velocity of surface flows during the points appropriate for the description that best fits conditions in the wetland	storms: Choose d. <i>Stems of plant</i> s		
should be thick enough (usually > $1/8$ in), or dense enough, to remain erect dense enough to remain erect dense erect dense enough to remain erect dense enough to remain erect dense erect	uring surface flows.	1	
Dense, uncut, rigid plants cover > 90% of the area of the wetland	points = 1		
All other conditions	points = 0		
Rating of Site Potential If score is: a 1 = M o 0 = L	Record the rating on	the first page	
S 5.0. Does the landscape have the potential to support hydrologic functions of the site?			
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land		0	
uses or cover that generate excess surface runoff?	Yes = 1 No = 0	0	
Rating of Landscape Potential If score is: I = M 0 = L Record the rating on			
S 6.0. Are the hydrologic functions provided by the site valuable to society?			
S 6.1. Distance to the nearest areas downstream that have flooding problems:			
The sub-basin immediately down-gradient of site has flooding			
problems that result in damage to human or natural resources (e.g.,		1	
houses or salmon redds)	points = 2	I	
Surface flooding problems are in a sub-basin farther down-gradient	points = 1		
No flooding problems anywhere downstream	points = 0		
S 6.2. Has the site been identified as important for flood storage or flood			
conveyance in a regional flood control plan?	Yes = 2 No = 0		

,	0		100	-			
Total for S 6			Add the points in the	boxes	above	1	
		 	 _			 	

Rating of Value If score is: \circ 2 - 4 = H \circ 1 = M \circ 0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

Wetland name or number

These questions apply to wetlands of all HGM classes.			
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat			
H 1.0. Does the site have the potential to provide habitat?			
H 1.1. Structure of plant community: <i>Indicators are Cowardin classes and strata within the</i> <i>Forested class.</i> Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.			
 Aquatic bed 4 structures or more: points = 4 Emergent 3 structures: points = 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points - 1 Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 	0		
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).			
 Permanently flooded or inundated Seasonally flooded or inundated Occasionally flooded or inundated Occasionally flooded or inundated Saturated only Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland 	1		
 Lake Fringe wetland Freshwater tidal wetland 2 points 			
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2	0		
5 - 19 speciespoints = 1< 5 species			
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you have four or more plant classes or three classes and open</i> <i>water, the rating is always high.</i> None = 0 points Low = 1 point All three diagrams in this row are	0		
HIGH = 3 points			

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number	
of points.	
 Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long) 	
 Standing snags (dbh > 4 in) within the wetland 	
 Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends 	
at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at	
least 33 ft (10 m)	0
 Stable steep banks of fine material that might be used by beaver or muskrat for denning 	
(> 30 degree slope) OR signs of recent beaver activity are present (<i>cut shrubs or trees</i>	
that have not yet weathered where wood is exposed)	
 At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas 	
that are permanently or seasonally inundated (structures for egg-laying by amphibians)	
 Invasive plants cover less than 25% of the wetland area in every stratum of plants (see 	
H 1.1 for list of strata)	
Total for H 1 Add the points in the boxes above	1

Rating of Site Potential If Score is: 15 - 18 = H 17 - 14 = M 16 0 - 6 = L Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat function of the site?		
H 2.1 Accessible habitat (include only habitat that directly abuts wetland unit).		
Calculate:		
1 % undisturbed habitat + (0 % moderate & low intensity land uses / 2) = 1%		
If total accessible habitat is:	0	
$> \frac{1}{3}$ (33.3%) of 1 km Polygon points = 3		
20 - 33% of 1 km Polygon points = 2		
10 - 19% of 1 km Polygon points = 1		
< 10 % of 1 km Polygon points = 0		
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
Calculate:		
6 % undisturbed habitat + (45 % moderate & low intensity land uses / 2) = 28.5%		
	2	
Undisturbed habitat > 50% of Polygon points = 3	2	
Undisturbed habitat 10 - 50% and in 1-3 patches points = 2		
Undisturbed habitat 10 - 50% and > 3 patches points = 1		
Undisturbed habitat < 10% of 1 km Polygon points = 0		
H 2.3 Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use points = (-2)	0	
≤ 50% of 1km Polygon is high intensity points = 0		
Total for H 2 Add the points in the boxes above	2	

Rating of Landscape Potential If Score is: • 4 - 6 = H • 1 - 3 = M • < 1 = L Record the rating on the first page

H 3.0. Is the habitat provided by the site valuable to society?				
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies?	Choose			
only the highest score that applies to the wetland being rated.				
Site meets ANY of the following criteria:	points = 2			
 It has 3 or more priority habitats within 100 m (see next page) 				
 It provides habitat for Threatened or Endangered species (any plant 	t			
or animal on the state or federal lists)				
It is mapped as a location for an individual WDFW priority species				
It is a Wetland of High Conservation Value as determined by the				
Department of Natural Resources				
 It has been categorized as an important habitat site in a local or 				
regional comprenensive plan, in a Shoreline Master Plan, or in a				

watershed plan	
Site has 1 or 2 priority habitats (listed on next page) with in 100m	points = 1
Site does not meet any of the criteria above	points = 0
Rating of Value If Score is: 2 = H 1 H 0 0 = L	Record the rating on the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.

<u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE**: This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- Oregon White Oak: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies**: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report – see web link on previous page*).
- **Caves**: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- ^o **Cliffs**: Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- Talus: Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland	Туре	Category		
Check of	f any criteria that apply to the wetland. List the category when the appropriate criteria are met.			
SC 1.0.	Estuarine wetlands			
	The dominant water regime is tidal			
	Vegetated and			
	With a salinity greater than 0.5 nnt			
	Print a commercial grouter than elepper ■ Yes - Go to SC 1.1 ■ No = Not an estuarine wetland			
SC 1.1.	Is the wetland within a National Wildlife Refuge, National Park, National Estuary			
	Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific			
	Reserve designated under WAC 332-30-151?			
	Yes = Category I No - Go to SC 1.2			
SC 1.2.	Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?			
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing,			
	and has less than 10% cover of non-native plant species. (If non-native species are			
	Spartina, see page 25)			
	At least $\frac{3}{4}$ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-			
	grazed or un-mowed grassiand.			
	open water, or contiguous freshwater wetlands			
	$\nabla e^{-1} = \nabla e^{-1} $			
SC 2 0	Wetlands of High Conservation Value (WHCV)			
SC 2.1.	Has the WA Department of Natural Resources updated their website to include the list			
	of Wetlands of High Conservation Value?			
	Yes - Go to SC 2.2 • No - Go to SC 2.3			
SC 2.2.	Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?			
	Yes = Category I No = Not WHCV			
SC 2.3.	Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?			
	http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf			
0004	Yes - Contact WNHP/WDNR and to SC 2.4 • No = Not WHCV Use W/DND identified the wetland within the S/T/D as a Wetland of Link Concernation			
50 2.4.	Value and listed it on their website?			
	• Ves = Category I • No = Not WHCV			
SC 3.0.				
	Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation			
	in bogs? Use the key below. If you answer YES you will still need to rate the			
	wetland based on its functions.			
SC 3.1.	Does an area within the wetland unit have organic soil horizons, either peats or mucks,			
	that compose 16 in or more of the first 32 in of the soil profile?			
	Yes - Go to SC 3.3 No - Go to SC 3.2			
SC 3.2.	Does an area within the wetland unit have organic soils, either peats or mucks, that are			
	less than 16 in deep over bedrock, or an impermeable nardpan such as clay or volcanic			
	ash, or that are notating on top of a lake of point? \Box Vec. Go to SC 3.2 \Box No = is not a bog			
SC 3 3	Does an area with peats or mucks have more than 70% cover of mosses at ground			
00 0.0.	level. AND at least a 30% cover of plant species listed in Table 4?			
	Yes = Is a Category I bog No - Go to SC 3.4			
	NOTE : If you are uncertain about the extent of mosses in the understory, you may			
	substitute that criterion by measuring the pH of the water that seeps into a hole dug at			
	least 16 in deep. If the pH is less than 5.0 and the plant species in Table 4 are present,			
	the wetland is a bog.			
SC 3.4.	Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir,			
I	western red cedar, western hemlock, lodgepole pine, quaking aspen, Engelmann	l		

spruce, or western white pine, AND any of the species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
Yes = Is a Category I bog No = Is not a bog	

Wetland name or number

SC 4.0.	Eorested Wetlands	
	Does the wetland have at least 1 contiguous acre of forest that meets one of these	
	criteria for the WA Department of Fish and Wildlife's forests as priority babitats? If you	
	answor VES you will still need to rate the wetland based on its functions	
_	answer TES you will suil need to rate the wetland based on its functions.	
	Old-growth forests (west of Cascade crest): Stands of at least two free species,	
	forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac	
	(20 trees/ha) that are at least 200 years of age OR have a diameter at breast height	
	(dbh) of 32 in (81 cm) or more.	
	Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-	
	200 years old OR the species that make up the canopy have an average diameter (dbh)	
	exceeding 21 in (53 cm).	
	Yes = Category I No = Not a forested wetland for this section 	
SC 5.0.	Wetlands in Coastal Lagoons	
	Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
	The wetland lies in a depression adjacent to marine waters that is wholly or partially	
	separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently,	
	rocks	
	The lagoon in which the wetland is located contains ponded water that is saline or	
	brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to	
	be measured near the bottom)	
	$\square \text{ Yes} - \text{Go to } \mathbf{SC} 5 1 \square \square \text{ No} = \text{Not a wetland in a coastal langoon}$	
SC 5 1	Does the wetland meet all of the following three conditions?	
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing)	
	and has loss than 20% sover of aggressive, apportunistic plant aposics (see list of	
	and has less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100)	
_	At least 3/ of the landward edge of the watland has a 100 ft buffer of abruh forest, an un	
L	At least % of the landward edge of the wetland has a 100 it buller of shrub, forest, or un-	
	The wetland is larger than $\frac{1}{10}$ ac (4350 ft ²)	
	Yes = Category I No = Category II	
SC 6.0.	Interdunal wetlands	
	is the wetland west of the 1889 line (also called the western Boundary of Upland	
	Ownership or WBUO)? If you answer yes you will still need to rate the wetland	
	based on its habitat functions.	
	In practical terms that means the following geographic areas:	
	Long Beach Peninsula: Lands west of SR 103	
	Grayland-Westport: Lands west of SR 105	
	Ocean Shores-Copalis: Lands west of SR 115 and SR 109	
	Yes - Go to SC 6.1 No = Not an interdunal wetland for rating	
SC 6.1.	Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form	
	(rates H,H,H or H,H,M for the three aspects of function)?	
	Yes = Category I No - Go to SC 6.2	
SC 6.2.	Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	
	= Yes = Category II = No - Go to SC 6.3	
SC 6 3	Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and	
200.0.	1 ac?	
	Yes = Category III No = Category IV	
Categor	v of wetland based on Special Characteristics	
	y or welland based on operial onalactensites swared No for all types, enter "Not Applicable" on Summary Form	
n you an	swered no for all types, enter not Applicable on Summary FUM	

SF = Seasonally Flooded S = Saturated

150-offset

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A1 Hydroperiods Jackson Villa 4

Accessible Habitat

1% Undisturbed (AU)0% Moderate & Low Intensity Land Use/2 = (AML)

Undisturbed Habitat

6% Undisturbed (UH)45% Moderate & Low Intensity Land Use/2 = (UML)

High Intensity = HI (48%)

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure A2 1km Polygon Jackson Villa 4

E = Emergent

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A3 Cowardin Plant Classes Jackson Villa 4

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure A4 303(d) Listed Waters Jackson Villa 4

Listi	ng ID: 6670
Main L	isting Information
Listing ID: 6670	Current Category: 4A
Waterbody Name: DILLENBAUGH CREEK	
Medium: Water	View Category History
Parameter: Bacteria	
WOI Project: Upper Chehalis River Bacteria TMDI	
Designated Use: None	
As	sessment Unit
Assessment Unit ID: 17100103006316 County: Lewis	
WRIA: 23 - Upper	Chehalis
Ba	sis Statement
Crawford 1987 2 excursions beyond the criterion between 5/	86 and 6/86 at RM 1.7
	//
	Remarks
Part of the Upper Chehalis Fecal Coli	form Bacteria TMDL approved by EPA 07/22/04kk
	ata Sources
No	Source Records
ſ	Back To Posults

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A5 TMDL Jackson Villa 4 **APPENDIX C - CLIMATOLOGICAL DATA**

Daily Data | AgWeatherNet at Washington State University

Date	Date	Min°F	Avg°F	Max°F	Avg1.5m DP°F	Avg1.5m RH%	Avg1.5m LWu.	AvgDir	Avg Speedmph	2m MaxGustmph	in. °F	Min°F	Avg°F	AvgSoilVWC%	TotPrecin	TotalSolarRadMJ/m ²	EToin	ETrin	Avg2m Atm.Pressiı
2020/10/30	30	37.4	49.4	59.3	44.0	82.9	0.07	SW	3.9	16.0	51.4	52.5	53.1	41.9	0.16	6.51	0.04	0.05	30.14
2020/10/31	31	32.9	42.9	59.3	38.6	86.5	0.05	Ν	2.2	12.1	48.5	51.2	52.1	41.9	0.01	8.62	0.03	0.05	30.36
2020/11/01	1	32.2	43.4	64.8	39.8	88.9	0.06	SW	2.0	7.1	47.7	50.0	50.9	41.6	0.00	9.44	0.04	0.05	30.22
2020/11/02	2	31.0	44.8	67.2	39.8	86.1	0.06	S	2.6	9.6	47.7	49.6	50.6	41.4	0.00	9.87	0.05	0.07	30.10
2020/11/03	3	38.5	50.7	59.0	48.5	92.3	0.09	S	6.5	22.8	49.3	50.2	50.7	42.7	0.60	2.80	0.02	0.03	29.95
2020/11/04	4	58.5	60.7	64.0	57.7	89.9	0.02	S	7.6	20.0	55.1	51.4	53.0	43.1	0.33	2.64	0.04	0.05	30.07
2020/11/05	5	46.2	51.9	59.8	50.3	94.1	0.19	SW	2.8	11.0	54.5	54.4	54.9	44.1	0.78	1.10	0.01	0.02	30.05
2020/11/06	6	33.2	43.2	49.4	40.4	90.3	0.12	Ν	5.2	20.3	50.3	52.4	53.3	43.7	0.45	3.35	0.02	0.02	29.85
2020/11/07	7	30.3	35.3	42.2	34.2	96.0	0.10	W	2.4	12.1	46.1	49.8	50.6	42.3	0.00	3.22	0.02	0.02	29.79
2020/11/08	8	25.3	34.0	48.3	27.1	81.4	0.04	Ν	2.0	12.1	43.5	47.7	48.5	41.8	0.00	9.41	0.02	0.04	30.04
2020/11/09	9	25.0	34.5	41.3	30.4	87.0	0.01	S	4.1	15.0	41.0	45.7	46.4	41.5	0.13	3.49	0.02	0.03	30.20
2020/11/10	10	37.3	42.0	48.1	40.2	93.5	0.13	S	3.8	12.1	43.6	45.4	45.8	43.0	0.39	3.74	0.02	0.03	30.04
2020/11/11	11	34.2	37.9	42.2	36.8	95.9	0.11	SW	1.9	8.2	43.7	46.0	46.3	42.6	0.05	2.92	0.01	0.02	30.17
2020/11/12	12	35.0	41.2	46.3	37.3	86.6	0.06	S	6.8	25.3	43.6	45.8	46.1	42.0	0.01	3.16	0.03	0.04	29.95
2020/11/13	13	39.3	44.8	49.5	41.4	87.9	0.12	S	6.6	29.6	45.4	46.0	46.4	43.9	1.60	3.13	0.02	0.04	29.57

JACKSON VILLAS 4 TRAFFIC IMPACT ANALYSIS

Lewis County, WA

Prepared for: Mr. Aaron Fuller, P.E. Fuller Designs 645 SE Prospect Street Chehalis, WA 98532

December 2020

JACKSON VILLAS 4 TRAFFIC IMPACT ANALYSIS

TABLE OF CONTENTS

1.	Introduction	3
2.	Project Description	3
3.	Existing Conditions	6
4.	Future Traffic Conditions	.10
5.	Summary	.15

Appendix

LIST OF TABLES

1.	Baseline 2020 PM Peak Hour Level of Service	9
2.	Project Trip Generation	10
3.	Forecast 2025 PM Peak Hour Level of Service	14

LIST OF FIGURES

1.	Vicinity Map & Roadway System	4
2.	Site Plan	5
3.	Baseline 2020 PM Peak Hour Volumes	7
4.	PM Peak Hour Trip Distribution & Assignment	11
5.	Forecast 2025 PM Peak Hour Background Volumes	12
6.	Forecast 2025 PM Peak Hour Volumes with Project	13

JACKSON VILLAS 4 TRAFFIC IMPACT ANALYSIS

1. INTRODUCTION

The main goals of this study focus on the analysis of existing roadway conditions and forecasts of newly generated project traffic. The first task includes the review of general roadway information on the adjacent street system, baseline vehicular volumes, and entering sight distance data. Forecasts of future traffic and dispersion patterns on the street system are then determined using established trip generation and distribution techniques. As a final step, appropriate conclusions and mitigation measures are defined.

2. PROJECT DESCRIPTION

Jackson Villas 4 is a proposed development consisting of up to 69 multi-family dwelling units located in the Chehalis Urban Growth Area of Lewis County. The subject property is situated on the southeast corner of the Jackson Highway & Kennicott Road intersection on 4.32-acre parcel #: 010799001000. The lot is largely undeveloped with the exception of two small shed structures which are to be removed for new construction. Two accesses extending southeast from Kennicott Road are proposed to serve the subject site. Illustrated below is an aerial image demarcating the subject lot boundaries. Figure 1 on the following page identifies the adjacent street system and general project vicinity. A conceptual site plan of the project is presented in Figure 2.

3. EXISTING CONDITIONS

3.1 Existing Roadway Characteristics

The major roadways and arterials defined in the study area are listed and described below.

Jackson Highway: is a northwest-southeast, two-lane arterial bordering the subject site to the southwest. Travel lanes are approximately 11-feet in width. Shoulders are composed of paved segments 4- to 8-feet in width. No non-motorist facilities are present in the area. The roadway has a posted speed limit of 35 mph in the vicinity of the subject site.

Kennicott Road: is a northwest-southeast, two-lane local roadway bordering the subject site to the northwest. Travel lanes are approximately 11-feet in width. Vertical curb is present for an approximate 550-foot segment on the north side of the roadway from Jackson Highway. Elsewhere, shoulders are grass/gravel with no non-motorist facilities. The posted speed limit is 25 mph.

3.2 Pedestrian and Bicycle Activity

During field observations, no non-motorist transport was observed along Jackson Highway or Kennitcott Road. The area is rural in nature with limited walkable amenities. No significant increase with respect to non-motorist transport would be expected from the development given the limited non-motorist infrastructure in the vicinity of the subject site.

3.3 Existing Peak Hour Volumes and Patterns

Field data for this study was collected in November of 2020. Traffic counts were taken at the intersection of Jackson Highway & Kennicott Road, which would receive the bulk of the anticipated vehicular demands. Data was obtained during evening peak period between the hours of 4:00 PM – 6:00 PM, which generally translates to highest overall roadway volumes in a given 24-hour period. The one hour reflecting highest overall roadway volumes (peak hour) was then derived from these counts.

Additionally, the WSDOT COVID-19 Transportation System Performance Multimodal Executive Summary showed that traffic volumes in the area along state facilities in Lewis County were on average 8% lower than typical baseline conditions on the date the count was taken. To remain conservative in analysis, existing PM peak hour volumes were increased by 10%. Adjusted baseline 2020 PM peak hour volumes at the study intersection are illustrated in Figure 3 on the following page. Full-count sheets have been included in the appendix.

3.4 Public Transit

A review of the Twin Transit regional bus schedule indicates that Route 444 – Downtown Chehalis provides service in the vicinity of the subject site. While the nearest stop in relation to the development is provided at Wallace Road & Jackson Highway (0.40 miles northwest), riders may flag down a bus at any safe and visible area along the route. Weekday service is provided from 7:00 AM – 7:00 PM (60-minute headways) while weekend service is provided from 7:00 AM – 3:00 PM (60-minute headways). Refer to the Twin Transit bus schedule for further details.

3.5 Roadway Improvements

A review of the Lewis County Six-Year (2021-2026) Transportation Improvement Program indicates the following planned projects in the general area.

Rush Road Improvements (Bishop Road to s/o Holloway Drive; Priority #15): This project entails a major widening of the roadway to include curb, gutter sidewalk and more. Local funds allocated to the project total \$2,280,000 and construction is to begin in 2023.

Downie Road Extension (southerly extension; Priority #25): This project entails extending the roadway south to Maurin Road. Federal discretionary funding totals \$1,200,000 and construction is to begin in 2025.

A review of the City of Chehalis Six-Year (2021-2026) Transportation Improvement Program indicates the following planned project in the general area.

Market Blvd $- 13^{th}$ *to City Limits*: This project entails reconstruction and pedestrian improvements along Market Blvd with a start year of 2023 and a total estimate cost of \$4,600,000.

3.6 Site Access & Driveway Design

As shown in the provided site plan, two accesses extending southeast from Kennicott Road are proposed. The northern driveway has been positioned such that approximately 160 feet of spacing has been provided from centerline-to-centerline with Wallace Road. In addition, field measurements indicate sight lines to measure to 280-285 feet when looking north through the Wallace Road intersection – meeting applicable code standards¹. No sight distance deficiencies are identified with either proposed access driveway.

¹ City of Chehalis Engineering Development Code Chapter 12.04.280 Streets, Section M. Sight Obstruction. Based on 25 mph roadway and two-lane roadway, 255 feet of intersection sight distance is required.

3.7 Level of Service

Baseline intersection delays were determined through the use of the *Highway Capacity Manual* 6th Edition. Capacity analysis is used to determine level of service (LOS) which is an established measure of congestion for transportation facilities. The range¹ for intersection level of service is LOS A to LOS F with the former indicating the best operating conditions with low control delays and the latter indicating the worst conditions with heavy control delays. Detailed descriptions of intersection LOS are given in the 2016 Highway Capacity Manual. Level of service calculations were made through the use of the *Synchro 10* analysis program. For side-street, stop-controlled intersections, LOS is determined by the approach with the highest delay. Table 1 below presents baseline 2020 PM peak hour LOS delays for the key intersection of study.

Table 1: Baseline 2020 PM Peak Hour Level of Service

Delays given in seconds per vehicle

Intersection	Control	Movement	LOS	Delay
Jackson Highway &	Ston	SWB	Δ	97
Kennicott Road	Otop	0110	~	5.7
SWB: Southwest-bound				

Existing PM peak hour conditions are shown to operate with minimal delays at LOS A indicating stable operations during the critical PM peak hour of travel.

¹ Signalized Interse	ections - Level of Service	Stop Controlled Intersections – Level of Service						
	Control Delay per		Control Delay per					
Level of Service	Vehicle (sec)	Level of Service	Vehicle (sec)					
А	≤10	A	≤10					
В	$>$ 10 and \leq 20	В	$>$ 10 and \leq 15					
С	$>$ 20 and \leq 35	С	$>$ 15 and \leq 25					
D	$>$ 35 and \leq 55	D	$>$ 25 and \leq 35					
E	$>$ 55 and \leq 80	E	$>$ 35 and \leq 50					
F	> 80	F	> 50					
Highway Capacity Man	ual, 6th Edition							

4. FUTURE TRAFFIC CONDITIONS

4.1 Trip Generation

Trip generation is used to determine the magnitude of project impacts on the surrounding street system. This is usually denoted by the quantity or specific number of new trips that enter and exit a project during a designated time period, such as a specific peak hour (AM or PM) or an entire day. Data presented in this report was taken from the Institute of Transportation Engineer's publication *Trip Generation*, 10th Edition. The designated land use for this project is defined as Multifamily Housing Low-Rise (LUC 220). Table 2 below summarizes the estimated project trip generation using ITE rates. Included are the average weekday daily traffic (AWDT) and the AM and PM peak hours. Refer to the appendix for trip generation output.

	Table	2.110jee		onorau				
	Sizo		AM Pe	eak-Hou	ır Trips	PM P	eak-Hou	ır Trips
	0126		In	Out	Total	In	Out	Total
Multi-Family Low-Rise	69 units	505	7	25	32	24	15	39

Based on ITE data, the project is anticipated to generate 505 new daily weekday trips with 32 trips occurring in the AM peak hour and 39 in the PM peak hour.

4.2 Trip Distribution and Assignment

Trip distribution describes the process by which project generated trips are dispersed on the street network surrounding the site. PM peak hour trips generated by the project are expected to follow the general trip pattern as shown on Figure 4 on the following page. Percentages are generally based on the existing travel patterns identified in the field counts and location of the nearby roadway network. All project generated traffic was consolidated to a single access to remain conservative in analysis.

4.3 Future Peak Hour Volumes

A 5-year horizon of 2025 was used for future traffic delay analysis. The proposed development is located within the Chehalis Urban Growth Area of Lewis County. The City is forecasted to grow at an annual rate of 1.50%² according to the Chehalis Comprehensive Plan (2017). Therefore, forecast 2025 background traffic volumes were derived by applying a 1.5 percent compound annual growth rate to the baseline 2020 PM peak hour volumes shown in Figure 3. Forecast 2025 PM peak hour volumes without and with the addition of project-generated traffic are shown in Figures 5 and 6, respectively.

² Chehalis Comprehensive Plan 2017: Chapter 3 Land Use, pg. 4

4.4 Future Level of Service

Level of service analyses were made of the future PM peak hour volumes without (background) and with project related trips added to the key roadways and intersections. This analysis once again involved the use of the *Synchro 10* analysis program. Delays for the study and access intersections under future conditions are shown below in Table 3.

Table 3: Forecast	2025 PM	Peak Hour	Level of	Service
-------------------	---------	-----------	----------	---------

Delays given in seconds per vehicle

			<u>Back</u>	<u>ground</u>	With .	Project
Intersection	Control	Movement	LOS	Delay	LOS	Delay
Jackson Highway & Kennicott Road	Stop	SWB	А	9.8	В	11.3
Project Access & Kennicott Road	Stop	NWB	-	-	А	8.9

SWB: Southwest-bound NWB: Northwest-bound

Forecast 2025 PM peak hour Level of Service at the proposed access and study intersection are shown to operate at LOS B or better. No operational deficiencies are identified as a result of the proposed development.

4.5 Left Turn Lane Warrants

Left turn lanes are a means of providing necessary storage space for left turning vehicles at intersections. For this impact study, procedures described by the WSDOT Design Manual Exhibit 1310-7a were used to ascertain storage requirements at the study intersection of Jackson Highway & Kennicott Road. Requirements are based on a function of vehicular volumes, number of left-turning vehicles from the major roadway, and posted speed limits. Based on forecast 2025 PM peak hour volumes with project traffic, a left turn lane *would not be warranted.* Refer to the appendix for the warrant nomographs.

5. SUMMARY

Jackson Villas 4 is a proposed 69-unit multi-family development located in the Chehalis Urban Growth Area of Lewis County. The subject site is located on 4.32-acre tax parcel #: 010799001000. Access to the site is to be provided via two driveways extending southeast from Kennicott Road as shown in the site plan on Figure 2. Based on ITE data the project would be anticipated to generate 32 new AM peak hour trips (7 in / 25 out) and 39 new PM peak hour trips (24 in / 15 out).

Existing level of service (LOS) is summarized in Table 1 and indicates Jackson Highway & Kennicott Road operating with delays of LOS A. For forecast analyses, a five-year horizon was evaluated to asses impacts under future conditions. Table 3 summarizes forecast 2025 PM peak hour LOS delays without and with the project. Forecast 2025 conditions are shown to operate satisfactorily with LOS B or better conditions indicating no operational deficiencies.

Based on the analysis above, no mitigation is identified at this time.

Please feel free to contact me should you have further questions or concerns.

JACKSON VILLAS 4 TRAFFIC IMPACT ANALYSIS

APPENDIX

LEVEL OF SERVICE

The following are excerpts from the *2016 Highway Capacity Manual - Transportation Research Board Special Report 209.*

Six LOS are defined for each type of facility that has analysis procedures available. Letters designate each level, from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions and the driver's perception of those conditions.

Level-of-Service definitions

Level of service A represents primarily free-flow operations at average travel speeds, usually about 90 percent of the free-flow speed for the arterial classification. Vehicles are seldom impeded in their ability to maneuver in the traffic stream. Delay at signalized intersections is minimal.

Level of service B represents reasonably unimpeded operations at average travel speeds, usually about 70 percent of the free-flow speed for the arterial classification. The ability to maneuver in the traffic stream is only slightly restricted and delays are not bothersome.

Level of service C represents stable operations; however, ability to maneuver and change lanes in midblock locations may be more restricted than in LOS B, and longer queues, adverse signal coordination, or both may contribute to lower average travel speeds of about 50 percent of the average free-flow speed for the arterial classification.

Level of service D borders on a range in which small increases in flow may cause substantial increases in approach delay and hence decreases in arterial speed. LOS D may be due to adverse signal progression, inappropriate signal timing, high volumes, or some combination of these. Average travel speeds are about 40 percent of free-flow speed.

Level of service E is characterized by significant delays and average travel speeds of onethird the free-flow speed or less. Such operations are caused by some combination of adverse progression, high signal density, high volumes, extensive delays at critical intersections, and inappropriate signal timing.

Level of service F characterizes arterial flow at extremely low speeds, from less than onethird to one-quarter of the free-flow speed. Intersection congestion is likely at critical signalized locations, with long delays and extensive queuing.

Heath & Associates

2214 Tacoma Rd E Puyallup, WA 98371

File Name	: 4528a
Site Code	: 00004528
Start Date	: 11/10/2020
Page No	: 1

														5			
							Grou	ips Printe	d- Class	1							
	Jackson Hwy Kennicott Rd								Jacks	on Hwy		Driveway]	
		South	bound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	0	60	3	63	3	0	0	3	4	78	1	83	0	0	0	0	149
04:15 PM	0	71	3	74	5	0	0	5	3	51	0	54	0	0	0	0	133
04:30 PM	0	85	7	92	2	0	0	2	2	40	0	42	0	0	0	0	136
04:45 PM	0	92	8	100	4	0	0	4	4	41	0	45	0	0	0	0	149
Total	0	308	21	329	14	0	0	14	13	210	1	224	0	0	0	0	567
05:00 PM	0	86	2	88	3	0	0	3	1	39	0	40	0	0	0	0	131
05:15 PM	0	87	5	92	1	0	3	4	2	28	0	30	1	0	0	1	127
05:30 PM	0	62	3	65	4	0	2	6	2	31	0	33	0	0	0	0	104
05:45 PM	0	43	3	46	2	0	5	7	4	30	0	34	0	0	0	0	87
Total	0	278	13	291	10	0	10	20	9	128	0	137	1	0	0	1	449
Grand Total	0	586	34	620	24	0	10	34	22	338	1	361	1	0	0	1	1016
Apprch %	0	94.5	5.5		70.6	0	29.4		6.1	93.6	0.3		100	0	0		
Total %	0	57.7	3.3	61	2.4	0	1	3.3	2.2	33.3	0.1	35.5	0.1	0	0	0.1	

Heath & Associates

2214 Tacoma Rd E Puyallup, WA 98371

File Name	: 4528a
Site Code	: 00004528
Start Date	: 11/10/2020
Page No	: 2

		Jackso	on Hwy			Kenni	cott Rd			Jacks	on Hwy			Driv	eway		
		South	ponna			west	Jouna			NOTU	ponna			Easu	Jouna		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 04:00	PM to 0	5:45 PM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	ersection	Begins	at 04:00	PM												
04:00 PM	0	60	3	63	3	0	0	3	4	78	1	83	0	0	0	0	149
04:15 PM	0	71	3	74	5	0	0	5	3	51	0	54	0	0	0	0	133
04:30 PM	0	85	7	92	2	0	0	2	2	40	0	42	0	0	0	0	136
04:45 PM	0	92	8	100	4	0	0	4	4	41	0	45	0	0	0	0	149
Total Volume	0	308	21	329	14	0	0	14	13	210	1	224	0	0	0	0	567
% App. Total	0	93.6	6.4		100	0	0		5.8	93.8	0.4		0	0	0		
PHF	.000	.837	.656	.823	.700	.000	.000	.700	.813	.673	.250	.675	.000	.000	.000	.000	.951

Multifamily Housing (Low-Rise) (220)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location:	General Urba	n/Suburban

Number of Studies:	29
Avg. Num. of Dwelling Units:	168
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
7.32	4.45 - 10.97	1.31

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

2214 Tacoma Road Puyallup WA 98371 (253) 770 1401 Fax (253) 770 1473 heathtraffic.com

https://itetripgen.org/PrintGraph.htm?code=220&ivlabel=UNITS220&timeperiod=AWDVTE&x=&edition=385&locationCode=General%20Urban/Suburb... 1/1

Multifamily Housing (Low-Rise) (220)										
Vehicle Trip Ends vs:	Dwelling Units									
On a:	Weekday,									
	Peak Hour of Adjacent Street Traffic,									
	One Hour Between 7 and 9 a.m.									
Setting/Location:	General Urban/Suburban									
Number of Studies:	42									
Avg. Num. of Dwelling Units:	199									
Directional Distribution:	23% entering, 77% exiting									

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.46	0.18 - 0.74	0.12

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

2214 Tacoma Road Puyallup WA 98371 (253) 770 1401 Fax (253) 770 1473 heathtraffic.com

https://itetripgen.org/PrintGraph.htm?code=220&ivlabel=UNITS220&timeperiod=TASIDE&x=&edition=385&locationCode=General%20Urban/Suburban... 1/1

Multifamily Housing (Low-Rise) (220)											
Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p m											
Setting/Location:	General Urban/Suburban										
Number of Studies:	50										
Avg. Num. of Dwelling Units:	187										
Directional Distribution:	63% entering, 37% exiting										

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.56	0.18 - 1.25	0.16

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

2214 Tacoma Road Puyallup WA 98371 (253) 770 1401 Fax (253) 770 1473 heathtraffic.com

https://itetripgen.org/PrintGraph.htm?code=220&ivlabel=UNITS220&timeperiod=TPSIDE&x=&edition=385&locationCode=General%20Urban/Suburba... 1/1

0.5

Intersection

Int Delay, s/veh

••	~	~							==			<u></u>
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		- 44			- 🗘			- 44			- 🗘	
Traffic Vol, veh/h	23	339	0	1	231	14	0	0	0	0	0	15
Future Vol, veh/h	23	339	0	1	231	14	0	0	0	0	0	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	24	357	0	1	243	15	0	0	0	0	0	16

Major/Minor	Major1		l	Major2			Minor1			Minor2			
Conflicting Flow All	258	0	0	357	0	0	666	665	357	658	658	251	
Stage 1	-	-	-	-	-	-	405	405	-	253	253	-	
Stage 2	-	-	-	-	-	-	261	260	-	405	405	-	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1307	-	-	1202	-	-	373	381	687	378	384	788	
Stage 1	-	-	-	-	-	-	622	598	-	751	698	-	
Stage 2	-	-	-	-	-	-	744	693	-	622	598	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1307	-	-	1202	-	-	359	372	687	371	375	788	
Mov Cap-2 Maneuver	-	-	-	-	-	-	359	372	-	371	375	-	
Stage 1	-	-	-	-	-	-	608	584	-	734	697	-	
Stage 2	-	-	-	-	-	-	728	692	-	608	584	-	
Approach	SE			NW			NE			SW			
HCM Control Delay	0.5			0			0			97			
HCM LOS	0.0			U			A			Α			
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
				N 11 A /		0.5	0==	0===					
Minor Lane/Major Mvn	nt	NELn1	NWL	NWT	NWR	SEL	SET	SERS	SWLn1				
Capacity (veh/h)		-	1202	-	-	1307	-	-	788				
HCM Lane V/C Ratio		-	0.001	-	-	0.019	-	-	0.02				
HCM Control Delay (s)		0	8	0	_	78	0	_	97				

HCM Control Delay (s)	0	8	0	-	7.8	0	-	9.7	
HCM Lane LOS	А	А	А	-	А	А	-	А	
HCM 95th %tile Q(veh)	-	0	-	-	0.1	-	-	0.1	

HCM 6th TWSC

Synchro 10 Light Report Page 1 0.5

### Intersection

Int Delay, s/veh

	051	0FT	055	N 13 A /I			A LET L	NET	NED	014/	OWT	
Movement	SEL	SET	SER	NVVL	NWI	NWR	NEL	NEI	NER	SWL	SWI	SWR
Lane Configurations		- 44			- 🗘			- 44			- 44	
Traffic Vol, veh/h	25	365	0	1	249	15	0	0	0	0	0	16
Future Vol, veh/h	25	365	0	1	249	15	0	0	0	0	0	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	384	0	1	262	16	0	0	0	0	0	17

N A · /N A·							A. 4						
Major/Minor	Major1			vlajor2			Vinor1			Vinor2			
Conflicting Flow All	278	0	0	384	0	0	717	716	384	708	708	270	
Stage 1	-	-	-	-	-	-	436	436	-	272	272	-	
Stage 2	-	-	-	-	-	-	281	280	-	436	436	-	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1285	-	-	1174	-	-	345	356	664	350	360	769	
Stage 1	-	-	-	-	-	-	599	580	-	734	685	-	
Stage 2	-	-	-	-	-	-	726	679	-	599	580	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1285	-	-	1174	-	-	331	346	664	343	350	769	
Mov Cap-2 Maneuver	-	-	-	-	-	-	331	346	-	343	350	-	
Stage 1	-	-	-	-	-	-	583	565	-	715	684	-	
Stage 2	-	-	-	-	-	-	709	678	-	583	565	-	
Annraach	СF									CW			
Approach	SE 0 E									500			
HCM Control Delay, s	0.5			0			0			9.8			
HCM LOS							A			A			
Minor Lane/Major Mvn	nt	NELn1	NWL	NWT	NWR	SEL	SET	SERS	SWLn1				
Capacity (veh/h)		-	1174	-	-	1285	-	-	769				
HCM Lane V/C Ratio		-	0.001	-	-	0.02	-	-	0.022				
HCM Control Delay (s	)	0	8.1	0	-	7.9	0	-	9.8				
HCM Lane LOS		A	А	A	-	A	A	-	A				

HCM 6th TWSC

HCM 95th %tile Q(veh)

0

_

Synchro 10 Light Report Page 1

0.1

0.1

0.9

### Intersection

Int Delay, s/veh

	<u> </u>	~								<b></b>		
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		- 🗘			- 🗘			- 44			- 🗘	
Traffic Vol, veh/h	39	365	0	1	249	25	0	0	0	6	0	25
Future Vol, veh/h	39	365	0	1	249	25	0	0	0	6	0	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	41	384	0	1	262	26	0	0	0	6	0	26

Major/Minor	Major1		1	Major2			Minor1			Vinor2			
Conflicting Flow All	288	0	0	384	0	0	756	756	384	743	743	275	
Stage 1		· -	-	-	-	-	466	466	-	277	277	-	
Stage 2			-	-	-	-	290	290	-	466	466	-	
Critical Hdwy	4.12	- 2	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1		· -	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2			-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	; -	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1274		-	1174	-	-	325	337	664	331	343	764	
Stage 1		· -	-	-	-	-	577	562	-	729	681	-	
Stage 2			-	-	-	-	718	672	-	577	562	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1274		-	1174	-	-	304	323	664	320	329	764	
Mov Cap-2 Maneuver		· -	-	-	-	-	304	323	-	320	329	-	
Stage 1			-	-	-	-	553	539	-	699	680	-	
Stage 2			-	-	-	-	693	671	-	553	539	-	
Approach	SE			NW			NF			SW			
HCM Control Delay s	0.8			0			0			11 3		-	
HCM LOS	0.0			U			Δ			R			
							Λ			U			
Minor Lane/Major Mvm	nt	NELn1	NWL	NWT	NWR	SEL	SET	SER	SWLn1				
Capacity (veh/h)		-	1174	-	-	1274	-	-	602				
HCM Lane V/C Ratio		-	0.001	-	-	0.032	-	-	0.054				

HCM Control Delay (s)	0	8.1	0	-	7.9	0	-	11.3
HCM Lane LOS	A	Α	А	-	А	Α	-	В
HCM 95th %tile Q(veh)	-	0	-	-	0.1	-	-	0.2

HCM 6th TWSC

Synchro 10 Light Report Page 1

#### Intersection

Int Delay s/veh

Int Delay, s/veh	1.4						
Movement	NWL	NWR	NET	NER	SWL	SWT	
Lane Configurations	۰¥		et –			÷	
Traffic Vol, veh/h	15	0	40	24	0	16	
Future Vol, veh/h	15	0	40	24	0	16	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	e, # 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	16	0	43	26	0	17	

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2		
Conflicting Flow All	73	56	0	0	69	0	
Stage 1	56	-	-	-	-	-	
Stage 2	17	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	931	1011	-	-	1532	-	
Stage 1	967	-	-	-	-	-	
Stage 2	1006	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	931	1011	-	-	1532	-	
Mov Cap-2 Maneuver	931	-	-	-	-	-	
Stage 1	967	-	-	-	-	-	
Stage 2	1006	-	-	-	-	-	

Approach	NW	NE	SW	
HCM Control Delay, s	8.9	0	0	
HCM LOS	A			

Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT
Capacity (veh/h)	-	- 931	1532	-
HCM Lane V/C Ratio	-	- 0.018	-	-
HCM Control Delay (s)	-	- 8.9	0	-
HCM Lane LOS	-	- A	Α	-
HCM 95th %tile Q(veh)	-	- 0.1	0	-

HCM 6th TWSC

Synchro 10 Light Report Page 2



#### Exhibit 1310-7a Left-Turn Storage Guidelines: Two-Lane, Unsignalized