Jackson Villa Expansion 4

Chehalis, WA

Preliminary Drainage and Erosion Control Report

Fuller Designs Project No. 2084

March 4, 2021

Prepared by:

1101 Kresky Ave., Centralia, WA 98531; (360) 807-4420

PRELIMINARY DRAINAGE AND EROSION CONTROL REPORT

Jackson Villa Expansion 4

Chehalis, Washington March 4, 2021

Project Information

Prepared for: Jackson Villa Expansion 4

Contact: Lakewood Industries

12030 Sunrise Valley Dr. STE 450

Reston, VA 20194

Reviewing Agency

Jurisdiction: City of Chehalis

Contact: Trent Lougheed, City Engineer

References

2012 Stormwater Management Manual for Western Washington as Amended in December 2014 (The 2014 SWMMWW)

Project Engineer

Prepared by: Fuller Designs, Inc.

1101 Kresky Ave. Centralia, WA 98531 (360) 807- 4420

Contact: Aaron Fuller, PE

"I hereby certify that this Preliminary Drainage and Erosion Control Report for the Jackson Villa Expansion 4 project has been prepared by me or under my supervision and meets minimum standards of the City of Chehalis and normal standards of engineering practice. I hereby acknowledge and agree that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed by me."

Table of Contents

PRELIMINARY DRAINAGE AND EROSION CONTROL REPORT

TABLE OF CONTENTS

- SECTION 1 PROPOSED PROJECT DESCRIPTION
- SECTION 2 EXISTING CONDITONS DESCRIPTION
- SECTION 3 OFFSITE ANALYSIS REPORTS
- SECTION 4 APPLICABLE MINIMUM REQUIREMENTS

SECTION 5 – PERMANENT STORMWATER CONTROL PLAN Site Hydrology: Total Runoff Pre and Post Developed Comparison Flow Control System Design and Analysis Water Quality System Design and Analysis

- SECTION 6 CONSTRUCTION SWPPP Project Specific Construction BMPs
- SECTION 7 SPECIAL REPORTS AND STUDIES
- SECTION 8 OPERATION AND MAINTENANCE MANUAL
- SECTION 9 DRAFT STORMWATER MAINTENANCE AGREEMENT

SECTION 1 – PROPOSED PROJECT DESCRIPTION

Site Address: 0 Jackson Hwy Chehalis, WA 98532

Parcel Number(s): 010799001000

Total Site Area: 4.32 Acres

Zoning: UGA – Residential

Sec, Twn, Rge: Section 03 Township 13N Range 02W PT LT 8 SE RD BLK 1

RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD PRCL B BL-

09-148 335384

Proposed Improvements

The site is located on Jackson Highway adjacent to the intersection with Kennecott Road in South Chehalis. The project proposes to expand the existing Jackson Villas multifamily project onto this parcel. A total of 65 dwelling units are proposed with a 23-plex town home style building and 21 duplex buildings. Curb gutter sidewalk and private roads are proposed through the site. A mail cluster and bus pullout is proposed near the phase 1 entrance to the project site. Onsite parking will consist of a single car garage and 2 adjacent spaces per dwelling unit.

Stormwater runoff from the proposed impervious areas will be mitigated in a phased approach. Phase 1 will consist of collection of runoff in Contech filtration catch basins and underground detention piping. Mitigated runoff will be released to the phase 2 wetland area. Once phase 2 is approved, additional ponds will be constructed to treat and detain stormwater.

Phase 2 area of the site (southern half) has a wetland and is planned to be filled. A report describing the size, type, and quality of wetland has been prepared. Also a wetland bank use plan has been prepared for filling activities. Phase timing is dependent on wetland bank use approval.

The project will be served by:

City of Chehalis Water
City of Chehalis Sewer
Lewis County PUD Electricity

Centurylink & Comast Telecommunications
Lemay Refuse & Recycling

SECTION 2 – EXISTING CONDITONS DESCRIPTION

The lot currently fronts Jackson Highway. The lot has two existing detached garages primarily used by the single-family residence located on the property to the SE of the site.

These garages are to be demolished. The site is fully fenced with a small gate on the NW corner of the property.

There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property.

Vegetation onsite is consistent with medium to low density residential lots. Grasses and small shrubs are predominant throughout the site. The subject site consists of a sloped, unimproved property vegetated with a mix of pasture grass, teasel, thistles, and a few scattered willow clumps in the southern area.

The south half of the site has a wetland area which will be protected initially through phasing and then removed.

Soils in the area include Lacamas Silt Loam and Galvin Silt Loam. A soil survey indicates this area is hydraulic group C/D, is moderate to poorly drained, and has moderate to poor infiltration potential.

<u>SECTION 3 – OFFSITE ANALYSIS REPORTS</u>

The area immediately adjacent to the proposed project properties is:

- West Residential UGA and Kennecott Road
- South Residential UGA and Jackson Highway
- East Residential UGA
- North Residential UGA and Hosanna Lane

Properties to the north and west of the site are separated by adjacent roadways. Hosanna and Kennecott roads capture runoff and rout around the site. A small culvert under the Hosanna/Kennecott Intersection does send some runoff from northern properties down a ditch along the project's west boundary. Some of this runoff does flow down into the site due to incomplete ditches. This runoff will be captured and fully routed around the site in the proposed condition. A small portion of Jackson highway does contribute to a roadside ditch on the north side of the Highway. This runoff runs through the south boundary of the site and will continue to do so in the proposed condition. Properties to the south and east are hydraulically lower than the project site and do not contribute runoff.

The proposed project plans to maintain the natural drainage paths by releasing stormwater to the south culvert as it currently does. This area has not been flagged as a possible stormwater problem area.

A downstream analysis shows mitigated runoff discharging to a culvert under Jackson highway. This runoff then travels west toward the first phases of Jackson Villas in defined drainage ditches. After more than a quarter mile of manmade conveyance it discharges to a wet areas near Interstate Avenue in the industrial park of Chehalis. After approximately 2 miles runoff flows under Interstate 5 to the Dillenbaugh Creek.

<u>SECTION 4 – APPLICABLE MINIMUM REQUIREMENTS</u>

The minimum requirements for stormwater development and redevelopment sites are listed in Volume 1 chapter 2 of the 2014 Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW). Not all minimum requirements of this section apply to all projects. Determination of applicable minimum requirements is based on section 2.4 of the WSDOE SWMMWW.

Based on the thresholds given in figures 2.4.1 and 2.4.2 of the SWMMWW, the proposed Jackson Villa 4 project will create more than 5000 square feet of new impervious surface and thus must address all minimum requirements. These requirements as they apply to the project are discussed in more detail below.

Minimum Requirement #1 – Preparation of Drainage Control Plans:

A Stormwater Site Plan has been prepared (see Erosion Control and Drainage Plans).

Minimum Requirement #2 – Construction Stormwater Pollution Prevention Plan A Construction Stormwater Pollution Prevention Plan (SWPPP) has been prepared. See section 6.

<u>Minimum Requirement #3 – Source Control of Pollution</u>

All known, available, and reasonable source control BMPs shall be applied to the project to limit pollutants from encountering stormwater. Construction specific BMP's will be provided during construction (see Section 6 SWPPP for reference).

Minimum Requirement #4 – Preservation of Natural Drainage Systems and Outfalls

Stormwater leaving the site will be either dispersed toward natural drainages or directed toward the southern culvert where all site runoff currently goes. The same discharge points will be used in both pre and post development for both phases. Improvements onsite do not propose to impact natural drainages

Minimum Requirement #5 – On-site Stormwater Management

This project is inside the UGA and is on a site smaller than 5 acres. Therefore, List #2 from Section 2.5.5 in Volume I of the SWMMWW is applicable.

The proposed Best Management Practice's (BMP's) are as follows:

Lawn and Landscape Areas:

 All disturbed areas not being covered with a hard surface and all new lawn and landscape areas will contain soils meeting the Post-Construction Soil Quality and Depth (BMP T5.13) requirements.

Roof Areas:

- Roof area on the project shall use Downspout Dispersion (T5.10B), or Perforated Stubouts (T5.10C).
- Roof area will be connected directly to onsite detention systems.

Other Hard Surface Areas:

• Stormwater runoff from the new paved and gravel areas will be routed to the proposed stormwater treatment and attenuation.

Minimum Requirement #6 – Runoff Treatment

This project proposes to create more than 5000 square feet of pollution-generating hard surface (PGHS) and is subject to this minimum requirement. Each basin in the project was modeled using the 2012 Western Washington Hydrograph Model (WWHM) in accordance with the SWMMWW.

The project will be scheduled to temporarily discharge to the southern wetland in phase 1. Runoff from phase 1 will be treated using 8 separate Contech stormwater filter catch-basins. These catch-basins were sized according to manufactures direction using the 2-year offline flowrate. Offline flow rate is appropriate for these devices as higher flows are bypassed via internal weir. Cartridges are rated to handle approximately 12.5gpm each. 6 basins in phase 1 have lower than 12.5gpm treatment rate and 2 basins are slightly higher. Therefore, 6 single cartridge structures and 2 dual cartridge structures were used to treat phase 1 flow.

Once wetland bank use is approved phase 2 will fill the lower half of the site and utilize more conventional stormwater treatment systems. Shallow and low slope detentions ponds will be utilized in phase 2. Pond edges will compost amended filter strips which will accept sheet and shallow concentrated flows from the phase 2 area. Phase 1 discharge piping will be routed bypass phase 2 treatment systems.

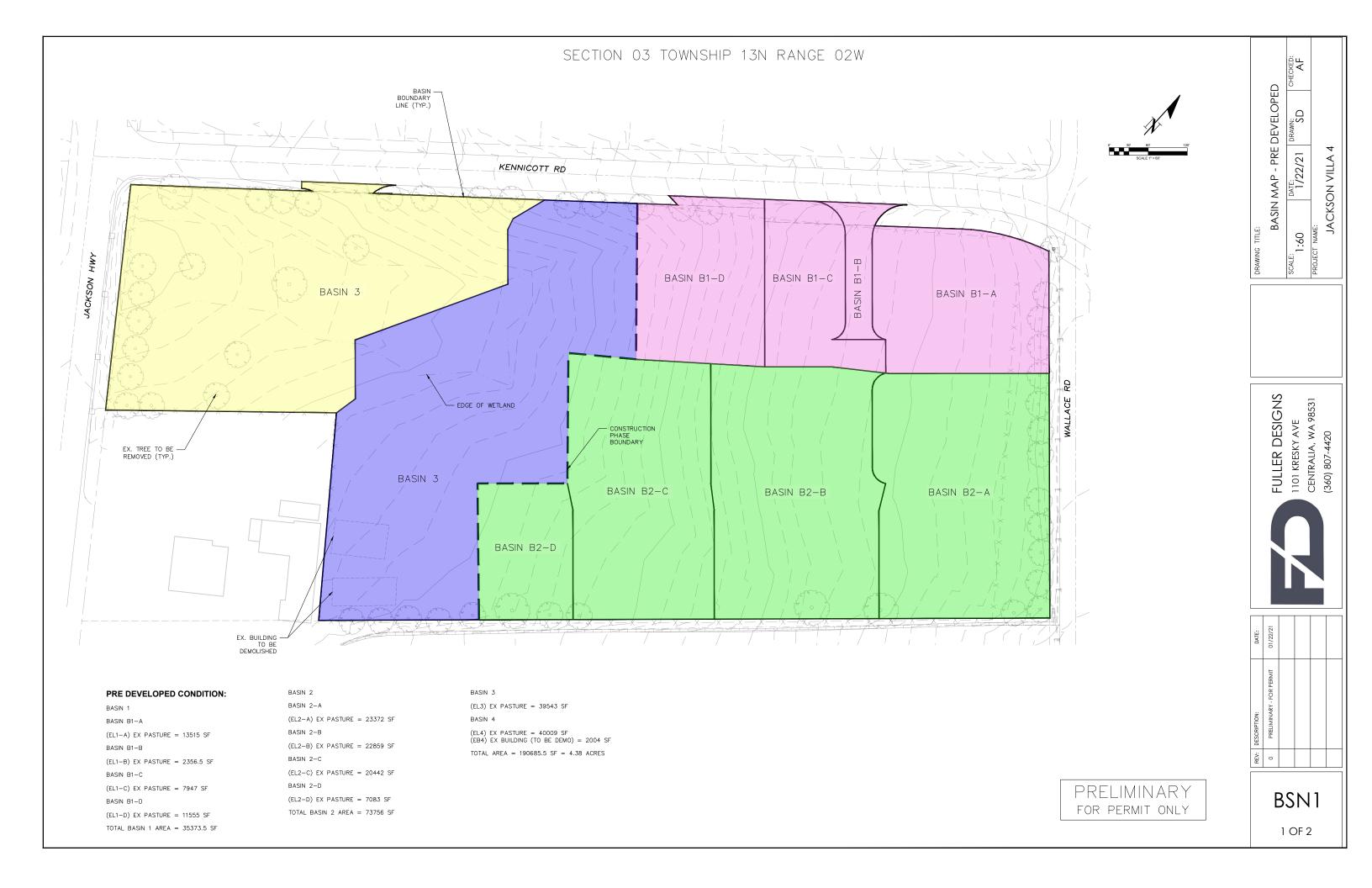
Minimum Requirement #7 – Flow Control

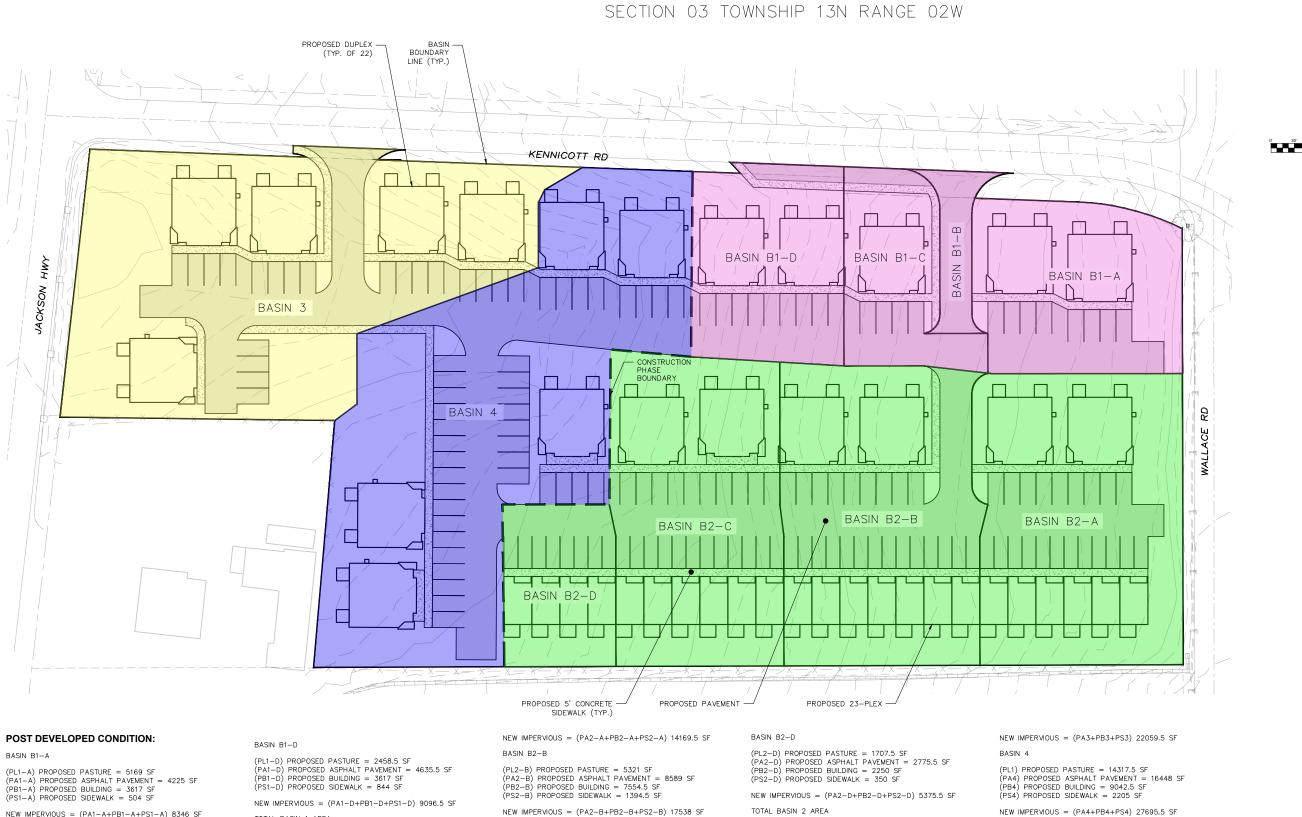
The development pre and post runoff rates were compared based on existing and proposed land coverage types using the WWHM2012 continuous inflow model. Stormwater from this site will be routed to onsite ponds and underground detention piping. Control structures specially design for each basin will be placed downstream of each detention structure to mitigate release rates back to predeveloped levels in accordance with the SWMMWW.

Minimum Requirement #8 – Wetlands Protection

The thresholds identified in Minimum Requirement #6 – Runoff Treatment, and Minimum Requirement #7 – Flow Control are used to determine the applicability of this requirement to discharges to wetlands. Since Minimum Requirements #6 and #7 are properly mitigated, Minimum Requirement #8 is considered satisfied for phase 1. Also phase 1 adheres to the standard 100' buffer recommendation. For phase 2 the lower wetland area will be filled through wetland bank credit application.

Minimum Requirement #9 – Operation and Maintenance


Maintenance of storm drainage facilities (bioswales, catch basins, ponds, etc..) will be the responsibility of the landowner whose property the individual structure


is located on. All improvements within Jackson Highway, and Kennecott Road right-of-way (roadside ditches, culverts, etc..) will be maintained by Lewis County. Onsite stormwater facilities will be maintained by the property owner or HOA. A storm drainage O&M plan is included in section 8 and a draft stormwater maintenance agreement is in section 9 of this report. Pending approval of this preliminary plan a notarized copy of the agreement will be submitted to the City.

SECTION 5 – PERMANENT STORMWATER CONTROL PLAN

The permanent storm plan is included in the civil plans for this project. The site will utilize many different mitigation facilities as described in Minimum requirements 6 and 7 of the previous section. This project will also utilize Post-Construction Soil Quality and Depth in accordance with BMP T5.13 from Chapter 5 of the SWMMWW.

To meet DOE recommendations and City requirements, permanent stormwater facilities must both clean and control flowrates from the proposed development. Included in this section is: basin map, a pre/post basin flow control analysis, and basin water quality analysis. These calculations were used to size the previously described stormwater facilities on the project site and show compliance with adopted regulations.

BASIN B1-B

(PA1-B) PROPOSED ASPHALT PAVEMENT = 2356.5 SF NEW IMPERVIOUS = (PA1-B) 2356.5 SF

BASIN B1-C

(PL1-C) PROPOSED PASTURE = 1727 SF (PA1-C) PROPOSED ASPHALT PAVEMENT = 3433.5 SF (PB1-C) PROPOSED BUILDING = 1808.5 SF (PS1-C) PROPOSED SIDEWALK = 978 SF

NEW IMPERVIOUS = (PA1-C+PB1-C+PS1-C) 6220 SF

TOTAL BASIN 1 AREA

(PL1) PROPOSED PASTURE = 9354.5 SF (PA1) PROPOSED ASPHALT PAVEMENT = 14650.5 SF (PB1) PROPOSED BUILDING = 9042.5 SF (PS1) PROPOSED SIDEWALK = 2326 SF

NEW IMPERVIOUS = (PA1+PB1+PS1) 26019 SF

(PL2-A) PROPOSED PASTURE = 9202.5 SF (PA2-A) PROPOSED ASPHALT PAVEMENT = 6152.5 SF (PB2-A) PROPOSED BUILDING = 6992 SF (PS2-A) PROPOSED SIDEWALK = 1025 SF

BASIN B2-C

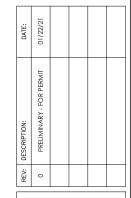
(PL2-C) PROPOSED PASTURE = 5860.5 SF (PA2-C) PROPOSED ASPHALT PAVEMENT = 6353 SF (PB2-C) PROPOSED BUILDING = 6992 SF (PS2-C) PROPOSED SIDEWALK = 1236.5 SF

NEW IMPERVIOUS = (PA2-C+PB2-C+PS2-C) 14581.5 SF

(PL2) PROPOSED PASTURE = 22091.5 SF (PA2) PROPOSED ASPHALT PAVEMENT = 23870 SF (PB2) PROPOSED BUILDING = 23788.5 SF (PS2) PROPOSED SIDEWALK = 4006 SF

NEW IMPERVIOUS = (PA2+PB2+PS2) 51664.5 SF BASIN 3

(PL1) PROPOSED PASTURE = 17483.5 SF (PA3) PROPOSED ASPHALT PAVEMENT = 10926 SF (PB3) PROPOSED BUILDING = 9042.5 SF (PS3) PROPOSED SIDEWALK = 2091 SF


TOTAL AREA = 190685.5 SF = 4.38 ACRES

PRELIMINARY FOR PERMIT ONLY

BASIN MAP - POST DEVELOPED S TE: 1/22/21 JACKSON VILLA 1:60

44

BSN₂

2 OF 2

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-1A

Site Name: Jackson Villas #4

Site Address:

City: Chehalis
Report Date: 1/22/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin B-1A

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.297

Pervious Total 0.297

Impervious Land Use acre

Impervious Total 0

Basin Total 0.297

Element Flows To:

Surface Interflow Groundwater

Mitigated Land Use

Basin B-1A

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.105

Pervious Total 0.105

Impervious Land Use acre ROADS MOD 0.119 ROOF TOPS FLAT 0.073

Impervious Total 0.192

Basin Total 0.297

Element Flows To:

Surface Interflow Groundwater

Tank 1 Tank 1

Routing Elements Predeveloped Routing

Mitigated Routing

Tank 1

Dimensions

Depth: 4 ft.

Tank Type: Circular

Diameter: 4 ft.

Length: 185 ft.

Infiltration On
Infiltration rate: 1
Infiltration safety factor: 1

Total Volume Infiltrated (ac-ft.):

Total Volume Through Riser (ac-ft.):

Total Volume Through Facility (ac-ft.):

Percent Infiltrated:

Total Precip Applied to Facility:

Total Evap From Facility:

0

Discharge Structure

Riser Height: 3.9 ft. Riser Diameter: 24 in.

Orifice 1 Diameter: 0.5 in. Elevation:0 ft.

Orifice 2 Diameter: 0.625 in. Elevation:2.16775 ft.

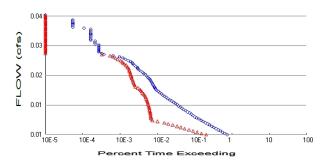
Orifice 3 Diameter: 0.4 in. Elevation: 2.96666666666667 ft.

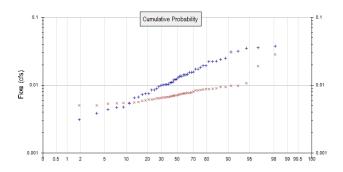
facility depth

orifice dimensions

Element Flows To:

Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.003	0.000	0.001	0.003
0.0889	0.005	0.000	0.002	0.005
0.1333	0.006	0.000	0.002	0.006
0.1778	0.007	0.000	0.002	0.007
0.2222	0.007	0.001	0.003	0.007
0.2667	0.008	0.001	0.003	0.008
0.3111	0.009	0.001	0.003	0.009
0.3556	0.009	0.002	0.004	0.009
0.4000	0.010	0.002	0.004	0.010
0.4444	0.010	0.003	0.004	0.010
0.4889	0.011	0.003	0.004	0.011
0.5333	0.011	0.004	0.005	0.011
0.5778	0.011	0.004	0.005	0.012
0.6222	0.012	0.005	0.005	0.012
0.6667	0.012	0.005	0.005	0.012
0.7111	0.013	0.006	0.005	0.013
0.7556	0.013	0.007	0.005	0.013
0.8000	0.013	0.007	0.006	0.013
0.8444	0.013	0.008	0.006	0.014
0.8889	0.014	0.008	0.006	0.014
0.9333	0.014	0.009	0.006	0.014
0.9778	0.014	0.010	0.006	0.014
1.0222	0.014	0.010	0.006	0.014
1.0667	0.015	0.011	0.007	0.015
1.1111	0.015	0.012	0.007	0.015
1.1556	0.015	0.012	0.007	0.015

0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.013 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.015 0.015 0.015 0.015 0.015 0.011	0.017 0.018 0.019 0.019 0.020 0.021 0.022 0.023 0.024 0.025 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.031 0.032 0.034 0.035 0.036 0.037 0.035 0.036 0.037 0.038 0.039 0.039 0.040 0.041 0.041 0.041 0.042 0.043 0.043 0.044 0.045 0.045 0.045 0.045 0.047 0.047 0.048 0.049	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.001 0.012 0.013 0.014 0.015 0.015 0.016 0.016 0.017 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.021 0.022 0.023 0.023 0.024 0.025 0.025 0.026 0.026 0.026 0.027 0.027	0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017
0.012 0.012 0.011	0.048 0.048	0.026 0.026 0.027	0.017 0.017 0.017
	0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.011 0.010 0.010	0.016 0.017 0.016 0.017 0.016 0.018 0.016 0.019 0.016 0.019 0.016 0.020 0.016 0.021 0.016 0.022 0.016 0.022 0.016 0.023 0.017 0.024 0.017 0.025 0.017 0.025 0.017 0.026 0.017 0.028 0.017 0.028 0.017 0.028 0.017 0.028 0.017 0.028 0.016 0.030 0.016 0.031 0.016 0.031 0.016 0.032 0.016 0.033 0.016 0.033 0.016 0.034 0.016 0.037 0.016 0.037 0.015 0.038 0.015 0.039 0.015 0.041 0.014 <td>0.016 0.017 0.008 0.016 0.018 0.008 0.016 0.019 0.008 0.016 0.020 0.008 0.016 0.021 0.008 0.016 0.021 0.008 0.016 0.022 0.009 0.016 0.023 0.009 0.017 0.024 0.009 0.017 0.025 0.009 0.017 0.025 0.009 0.017 0.026 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.016 0.030 0.012 0.016 0.031 0.013 0.016 0.031 0.013 0.016 0.031 0.014 0.016 0.032 0.015 0.016 0.034 0.016 <td< td=""></td<></td>	0.016 0.017 0.008 0.016 0.018 0.008 0.016 0.019 0.008 0.016 0.020 0.008 0.016 0.021 0.008 0.016 0.021 0.008 0.016 0.022 0.009 0.016 0.023 0.009 0.017 0.024 0.009 0.017 0.025 0.009 0.017 0.025 0.009 0.017 0.026 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.017 0.028 0.009 0.016 0.030 0.012 0.016 0.031 0.013 0.016 0.031 0.013 0.016 0.031 0.014 0.016 0.032 0.015 0.016 0.034 0.016 <td< td=""></td<>

3.7778	0.007	0.052	0.030	0.017
3.8222	0.007	0.052	0.030	0.017
3.8667	0.006	0.052	0.031	0.017
3.9111	0.005	0.053	0.056	0.017
3.9556	0.003	0.053	0.309	0.017
4.0000	0.000	0.053	0.702	0.017
4.0444	0.000	0.000	1.194	0.017
		\	\	
			required	facility
				= 2309cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.297 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 0.105
Total Impervious Area: 0.192

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.012336

 5 year
 0.020297

 10 year
 0.025889

 25 year
 0.033141

 50 year
 0.038611

 100 year
 0.044101

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.007105

 5 year
 0.009345

 10 year
 0.011045

 25 year
 0.013454

 50 year
 0.015447

 100 year
 0.017619

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.012	0.007
1957	0.022	0.009
1958	0.008	0.005
1959	0.010	0.007
1960	0.017	0.008
1961	0.011	0.006
1962	0.004	0.005
1963	0.023	0.009
1964	0.013	0.007
1965	0.014	0.007

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	0.007 0.011 0.009 0.005 0.010 0.012 0.025 0.010 0.009 0.036 0.017 0.003 0.014 0.022 0.010 0.024 0.009 0.018 0.014 0.005 0.019 0.035 0.019 0.035 0.007 0.031 0.038 0.007 0.005 0.005 0.004 0.005	0.006 0.008 0.007 0.005 0.006 0.007 0.009 0.007 0.006 0.007 0.006 0.007 0.007 0.007 0.008 0.009 0.007 0.006 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
1992	0.007	0.006
1993	0.005	0.005
1994	0.004	0.005
2000	0.016	0.008
2001	0.002	0.005
2002	0.014	0.010
2003	0.007	0.005
2004	0.013	0.009
2005	0.010	0.006
2006	0.014	0.008
2007	0.015	0.010
2008	0.032	0.028

Ranked Annual Peaks

Natiked Attitual Feaks				
Ranked Annual	Peaks for Prede	eveloped and Mitigated.	POC #1	
Rank	Predeveloped	Mitigated		
1	0.0379	0.0284		
2	0.0355	0.0192		
3	0.0352	0.0107		
4	0.0319	0.0098		
5	0.0308	0.0098		
6	0.0250	0.0094		
7	0.0239	0.0094		
8	0.0225	0.0090		
9	0.0224	0.0088		
10	0.0224	0.0088		
11	0.0193	0.0087		

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	0.0193 0.0183 0.0174 0.0173 0.0156 0.0154 0.0154 0.0145 0.0141 0.0141 0.0136 0.0135 0.0128 0.0123 0.0122 0.0120 0.0112 0.0109 0.0108 0.0103 0.0103 0.0103 0.0103 0.0103 0.0101 0.0100 0.0096 0.0088 0.0085 0.0085 0.0075 0.0075 0.0075 0.0072 0.0067 0.0065 0.0065 0.0047	0.0086 0.0085 0.0084 0.0083 0.0080 0.0078 0.0077 0.0076 0.0076 0.0075 0.0074 0.0073 0.0073 0.0072 0.0071 0.0070 0.0069 0.0069 0.0069 0.0066 0.0066 0.0066 0.0066 0.0064 0.0064 0.0064 0.0064 0.0064 0.0065 0.0065 0.0055 0.0055 0.0055
48	0.0054 0.0048	0.0055 0.0055

Duration Flows

The Facility PASSED

Flow(cfs) 0.0062 0.0065 0.0068 0.0072 0.0075 0.0078 0.0081 0.0085 0.0088 0.0091 0.0094 0.0098 0.0101 0.0104 0.0108 0.0117 0.0121 0.0124 0.0127 0.0130 0.0137 0.0140 0.0144 0.0147 0.0150 0.0153 0.0167 0.0160 0.0163 0.0167 0.0170 0.0173 0.0160 0.0163 0.0167 0.0170 0.0173 0.0160 0.0163 0.0167 0.0170 0.0173 0.0160 0.0163 0.0167 0.0170 0.0173 0.0160 0.0183 0.0167 0.0170 0.0173 0.0176 0.0199 0.0203 0.0206 0.0209 0.0212 0.0216 0.0219	Predev 13769 11831 10296 9028 7960 6938 6101 5334 4685 4131 3609 3172 2782 2427 2117 1879 1679 1508 1368 1187 1062 937 845 762 688 632 572 509 449 402 356 321 292 260 240 216 196 178 168 161 155 146 140 135 129 122 117 109 102	Mit 3758 2827 2156 1683 1307 994 793 627 475 363 283 188 137 132 124 123 121 120 118 115 111 109 106 104 102 100 96 94 91 85 78 71 662 564 464 454 43 424 4140 38 38 38 38	Percentage 27 23 20 18 16 14 12 11 10 8 7 5 4 5 6 7 8 8 9 10 12 13 14 15 16 18 20 22 33 24 36 37 36 34 30 31 32 31 32 33 34 34 37	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0206	129	42	32	Pass
0.0209	122	41	33	Pass
0.0212	117	40	34	Pass

0.0235 0.0239 0.0242 0.0245 0.0248 0.0252 0.0255 0.0258 0.0262 0.0265 0.0268 0.0271 0.0275 0.0278 0.0281 0.0285 0.0288 0.0291 0.0294 0.0298 0.0301 0.0304 0.0307 0.0311 0.0314 0.0317 0.0321 0.0324 0.0327 0.0330 0.0340 0.0340 0.0347 0.0321 0.0340 0.0347 0.0350 0.0353 0.0357 0.0360 0.0363 0.0366 0.0370 0.0373 0.0376 0.0380 0.0388 0.0388	68 61 56 54 50 54 51 53 53 53 53 53 53 53 53 53 53 53 53 53	33 32 30 29 27 24 21 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48 54 55 58 60 58 61 61 63 63 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pass Pass Pass Pass Pass Pass Pass Pass
---	--	--	--	---

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0286 acre-feet
On-line facility target flow: 0.0298 cfs.
Adjusted for 15 min: 0.0298 cfs.

Off-line facility target flow: 0.0167 cfs.

WQ flow is 7.5gpm Adjusted for 15 min: 0.0167 cfs.

Appendix Predeveloped Schematic

Basin B-1A 0.30ac		

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-1B

Site Name: Jackson Villas #4

Site Address:

City: Chehalis
Report Date: 1/22/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-1B 1/22/2021 5:49:02 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin B-1B

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.054

Pervious Total 0.054

Impervious Land Use acre

Impervious Total 0

Basin Total 0.054

Element Flows To:

Surface Interflow Groundwater

Basin B-1B 1/22/2021 5:49:02 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use acre ROADS MOD 0.054

Impervious Total 0.054

Basin Total 0.054

Element Flows To:

Surface Interflow Groundwater

Tank 1 Tank 1

Basin B-1B 1/22/2021 5:49:02 PM Page 4

Routing Elements Predeveloped Routing

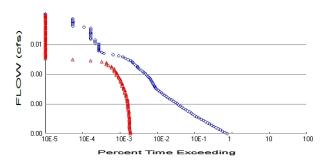
Mitigated Routing facility depth Tank 1 **Dimensions** Depth: 4 ft. Tank Type: Circular Diameter: 4 ft. Length: 57 ft. Infiltration On Infiltration rate: Infiltration safety factor: Total Volume Infiltrated (ac-ft.): 7.386 Total Volume Through Riser (ac-ft.): 0.616 Total Volume Through Facility (ac-ft.): 8.002 Percent Infiltrated: 92.3 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 orifice dimensions Discharge Structure Riser Height: 3.9 ft. Riser Diameter: 24 in. Orifice 1 Diameter: 0.125 in. Elevation:0 ft. Orifice 2 Diameter: 0.5 in. Elevation: 2.668 ft.

0.1875 in Elevation: 2.98583333333333 ft.

Tank Hydraulic Table

Outlet 2

Orifice 3 Diameter:


Element Flows To:

Outlet 1

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.001	0.000	0.000	0.001
0.0889	0.001	0.000	0.000	0.001
0.1333	0.001	0.000	0.000	0.001
0.1778	0.002	0.000	0.000	0.002
0.2222	0.002	0.000	0.000	0.002
0.2667	0.002	0.000	0.000	0.002
0.3111	0.002	0.000	0.000	0.002
0.3556	0.003	0.000	0.000	0.003
0.4000	0.003	0.000	0.000	0.003
0.4444	0.003	0.001	0.000	0.003
0.4889	0.003	0.001	0.000	0.003
0.5333	0.003	0.001	0.000	0.003
0.5778	0.003	0.001	0.000	0.003
0.6222	0.003	0.001	0.000	0.003
0.6667	0.003	0.001	0.000	0.003
0.7111	0.004	0.002	0.000	0.004
0.7556	0.004	0.002	0.000	0.004
0.8000	0.004	0.002	0.000	0.004
0.8444	0.004	0.002	0.000	0.004
0.8889	0.004	0.002	0.000	0.004
0.9333	0.004	0.002	0.000	0.004
0.9778	0.004	0.003	0.000	0.004
1.0222	0.004	0.003	0.000	0.004
1.0667	0.004	0.003	0.000	0.004
1.1111	0.004	0.003	0.000	0.004
1.1556	0.004	0.003	0.000	0.004

3.7778 3.8222	0.002 0.002	0.016 0.016	0.008 0.009	0.005 0.005
3.8667	0.001	0.016	0.009	0.005
3.9111	0.001	0.016	0.034	0.005
3.9556	0.001	0.016	0.287	0.005
4.0000	0.000	0.016	0.679	0.005
4.0444	0.000	0.000	1.171	0.005
			facility v	volume = 697cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.054
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0
Total Impervious Area: 0.054

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.002243

 5 year
 0.00369

 10 year
 0.004707

 25 year
 0.006026

 50 year
 0.00702

 100 year
 0.008018

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.000445

 5 year
 0.00062

 10 year
 0.000749

 25 year
 0.000927

 50 year
 0.00107

 100 year
 0.001223

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.002	0.000
1957	0.004	0.001
1958	0.001	0.000
1959	0.002	0.000
1960	0.003	0.001
1961	0.002	0.000
1962	0.001	0.000
1963	0.004	0.001
1964	0.002	0.000
1965	0.003	0.000

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	0.001 0.002 0.002 0.001 0.002 0.005 0.002 0.002 0.006 0.003 0.001 0.002 0.004	0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	0.004 0.002 0.003 0.003 0.001 0.004 0.006 0.001 0.002 0.006 0.007 0.001 0.001	0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.000
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	0.002 0.004 0.002 0.003 0.002 0.003 0.000 0.003 0.001 0.002 0.002 0.003 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.0069	0.0049
2	0.0065	0.0007
3	0.0064	0.0006
4	0.0058	0.0006
5	0.0056	0.0006
6	0.0045	0.0006
7	0.0043	0.0006
8	0.0041	0.0005
9	0.0041	0.0005
10	0.0041	0.0005
11	0.0035	0.0005

Basin B-1B 1/22/2021 5:49:26 PM Page 11

Duration Flows

The Facility PASSED

Flow(cfs) 0.0011 0.0012 0.0013 0.0014 0.0014 0.0015 0.0015 0.0017 0.0017 0.0018 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 0.0026 0.0026 0.0027 0.0027 0.0027 0.0028 0.0028 0.0029 0.0030 0.0031	Predev 13790 11827 10311 9032 7973 6945 6114 5338 4685 4133 3609 3184 2786 2416 2113 1873 1680 1504 1368 1186 1062 937 844 762 688 632 570 507 449 402 355 321 292 260 241 216 196 178 168 161 154 146 140 135 129 122 117	Mit 35 35 34 34 33 33 33 33 33 33 33 33 33 33 33	Percentage 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0036	140	21	15	Pass
0.0037	135	20	14	Pass
0.0037	129	19	14	Pass
0.0038	122	19	15	Pass

0.0043 6 0.0044 5 0.0045 5 0.0045 5 0.0046 4 0.0046 4 0.0047 3 0.0048 3 0.0048 3 0.0049 2 0.0049 2	51 56 54 50 45 41 39 36 31 32 36 37 37 38 38 38 38 38 38 38 38 38 38	13 11 11 9 8 8 8 8 1 9 9 9 9 9 9 9 9 9 9 9	21 19 20 18 17 19 15 83 00 00 00 00 00 00 00 00 00 00 00 00 00	P
--	--	---	--	---

Basin B-1B 1/22/2021 5:49:26 PM Page 13

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.007 acre-feet
On-line facility target flow: 0.0086 cfs.
Adjusted for 15 min: 0.0049 cfs.

Off-line facility target flow: 0.0049 cfs.

Adjusted for 15 min: 0.0049 cfs.

─ WQ flow = 2.2gpm

Appendix Predeveloped Schematic

7,1	Basin 0.05ac	B-1B			

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-1C

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/22/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-1C 1/22/2021 8:05:13 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.182

Pervious Total 0.182

Impervious Land Use acre

Impervious Total 0

Basin Total 0.182

Element Flows To:

Surface Interflow Groundwater

Basin B-1C 1/22/2021 8:05:13 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.04

Pervious Total 0.04

Impervious Land Use acre ROADS MOD 0.079 ROOF TOPS FLAT 0.041 SIDEWALKS MOD 0.022

Impervious Total 0.142

Basin Total 0.182

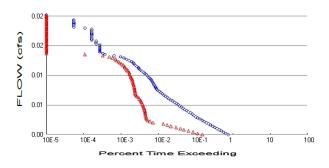
Element Flows To:

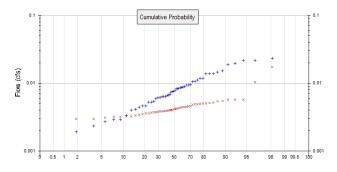
Surface Interflow Groundwater Tank 1 Tank 1

Basin B-1C 1/22/2021 8:05:13 PM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing facility depth Tank 1 **Dimensions** Depth: 4 ft. Tank Type: Circular Diameter: 4 ft. Length: 128 ft. Infiltration On Infiltration rate: Infiltration safety factor: Total Volume Infiltrated (ac-ft.): 17.969 Total Volume Through Riser (ac-ft.): 6.016 Total Volume Through Facility (ac-ft.): 23.984 Percent Infiltrated: 74.92 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 orifice dimensions Discharge Structure Riser Height: 3.9 ft. Riser Diameter: 24 in. Orifice 1 Diameter: 0.375 in. Elevation:0 ft. Orifice 2 Diameter: 0.5 in. Elevation: 2.668 ft. 0.3125 in Elevation: 2.97416666666667 ft. Orifice 3 Diameter: Element Flows To: Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.002	0.000	0.000	0.002
0.0889	0.003	0.000	0.001	0.003
0.1333	0.004	0.000	0.001	0.004
0.1778	0.004	0.000	0.001	0.004
0.2222	0.005	0.000	0.001	0.005
0.2667	0.005	0.001	0.002	0.005
0.3111	0.006	0.001	0.002	0.006
0.3556	0.006	0.001	0.002	0.006
0.4000	0.007	0.001	0.002	0.007
0.4444	0.007	0.002	0.002	0.007
0.4889	0.007	0.002	0.002	0.007
0.5333	0.008	0.002	0.002	0.008
0.5778	0.008	0.003	0.002	0.008
0.6222	0.008	0.003	0.003	0.008
0.6667	0.008	0.004	0.003	0.008
0.7111	0.009	0.004	0.003	0.009
0.7556	0.009	0.004	0.003	0.009
0.8000	0.009	0.005	0.003	0.009
0.8444	0.009	0.005	0.003	0.009
0.8889	0.009	0.006	0.003	0.009
0.9333	0.009	0.006	0.003	0.010
0.9778	0.010	0.007	0.003	0.010
1.0222	0.010	0.007	0.003	0.010
1.0667	0.010	0.007	0.003	0.010
1.1111	0.010	0.008	0.004	0.010
1.1556	0.010	0.008	0.004	0.010

1.2000 1.2444 1.2889 1.3333 1.3778 1.4222 1.4667 1.5111 1.5556 1.6000 1.6444 1.6889 1.7333 1.7778 1.8222 1.8667 1.9111 1.9556 2.0000 2.0444 2.0889 2.1333 2.1778 2.2222 2.2667 2.3111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.2667 2.7111 2.3556 2.4000 2.4444 2.4889 2.5333 2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444 2.8889 2.9333 2.9778 3.0222 3.0667 3.1111 3.1556 3.2000 3.2444 3.2889 3.3333 3.3778 3.4222 3.4667 3.5111	0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008	0.009 0.009 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.015 0.015 0.016 0.016 0.017 0.017 0.018 0.019 0.020 0.021 0.021 0.022 0.022 0.022 0.022 0.023 0.024 0.024 0.025 0.025 0.025 0.026 0.026 0.027 0.027 0.027 0.028 0.029 0.029 0.029 0.029 0.030 0.031 0.031 0.031 0.031 0.031 0.032 0.033 0.034 0.034	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.009 0.001 0.011 0.011 0.011 0.012 0.013 0.013 0.014 0.014 0.015 0.015 0.015	0.010 0.011
3.3778	0.008	0.033	0.014	0.011
3.4222	0.008	0.033	0.014	0.011

3.7778 3.8222 3.8667 3.9111 3.9556 4.0000 4.0444	0.005 0.004 0.004 0.003 0.002 0.000 0.000	0.036 0.036 0.036 0.036 0.036 0.000	0.016 0.017 0.017 0.042 0.295 0.688 1.180	0.011 0.011 0.011 0.011 0.011 0.011 0.011		
facility volume = 1568cf						

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.182
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 0.04
Total Impervious Area: 0.142

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.007559

 5 year
 0.012438

 10 year
 0.015865

 25 year
 0.020309

 50 year
 0.023661

 100 year
 0.027025

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.00412

 5 year
 0.005391

 10 year
 0.006352

 25 year
 0.007709

 50 year
 0.008828

 100 year
 0.010044

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.008	0.004
1957	0.014	0.005
1958	0.005	0.003
1959	0.006	0.004
1960	0.011	0.005
1961	0.007	0.004
1962	0.002	0.003
1963	0.014	0.005
1964	0.008	0.004
1965	0.009	0.004

0.005 0.007 0.005 0.003 0.006 0.007 0.015 0.006 0.005 0.022 0.011 0.002 0.008 0.014 0.006 0.015 0.0015 0.0011 0.009 0.003 0.012 0.0022 0.004 0.006 0.019 0.023 0.004 0.006 0.019 0.023 0.004 0.003 0.007 0.012 0.007 0.009 0.008 0.010 0.009 0.008	0.003 0.004 0.003 0.004 0.005 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004
0.001 0.009	0.003 0.006
	0.007 0.005 0.003 0.006 0.007 0.015 0.006 0.002 0.011 0.002 0.008 0.014 0.006 0.015 0.005 0.011 0.009 0.003 0.012 0.002 0.004 0.006 0.019 0.023 0.004 0.003 0.019 0.003 0.012 0.004 0.003 0.019 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.004 0.003 0.004 0.003 0.005 0.001 0.003 0.001 0.003 0.001 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.009 0.003

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0232	0.0173
2	0.0218	0.0103
3	0.0216	0.0057
4	0.0196	0.0057
5	0.0188	0.0057
6	0.0153	0.0054
7	0.0147	0.0054
8	0.0138	0.0052
9	0.0137	0.0051
10	0.0137	0.0051
11	0.0118	0.0050

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	0.0118 0.0112 0.0106 0.0096 0.0094 0.0094 0.0089 0.0087 0.0086 0.0083 0.0083 0.0079 0.0075 0.0075 0.0075 0.0074 0.0069 0.0067 0.0066 0.0063 0.0063 0.0063 0.0063 0.0062 0.0061 0.0052 0.0052 0.0052 0.0052 0.0046 0.0046 0.0046 0.0041 0.0040 0.0040 0.0040 0.0029 0.0029	0.0050 0.0049 0.0048 0.0046 0.0045 0.0045 0.0045 0.0044 0.0043 0.0043 0.0042 0.0042 0.0042 0.0040 0.0040 0.0040 0.0039 0.0039 0.0038 0.0038 0.0038 0.0038 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0035 0.0032 0.0032 0.0032
47	0.0033	0.0032
48	0.0029	0.0032

Basin B-1C 1/22/2021 8:05:37 PM Page 11

Duration Flows

The Facility PASSED

Flow(cfs) 0.0038 0.0040 0.0042 0.0044 0.0046 0.0048 0.0050 0.0052 0.0054 0.0056 0.0058 0.0060 0.0062 0.0064 0.0066 0.0068 0.0070 0.0072 0.0074 0.0076 0.0078 0.0080 0.0082 0.0084 0.0088 0.0090 0.0092 0.0084 0.0088 0.0090 0.0092 0.0094 0.0096 0.0098 0.0100 0.0102 0.0104 0.0106 0.0108 0.0110 0.0112 0.0114 0.0116 0.0118 0.0120	Predev 13781 11833 10296 9038 7965 6941 6105 5334 4685 4131 3609 3174 2782 2418 2109 1875 1679 1504 1367 1183 1062 936 844 761 688 632 570 507 449 402 355 321 292 261 242 217 196 178 168 161 154	Mit 2782 2089 1589 1190 904 720 554 402 321 252 133 112 95 91 88 87 84 83 81 80 79 77 75 73 71 68 65 64 61 57 54 49 46 45 44 44 43 43 44 43 44 44 43 43 44 40 40 40 40 40 40 40 40 40 40 40 40	Percentage 20 17 15 13 11 10 9 7 6 6 3 3 3 4 4 5 5 6 6 7 8 9 9 10 11 11 12 14 15 16 16 17 18 20 22 24 25 26 27 27	Pass Pass Pass Pass Pass Pass Pass Pass
0.0110	196	44	22	Pass
0.0112	178	43	24	Pass
0.0114	168	43	25	Pass
0.0116	161	42	26	Pass
0.0118	154	42	27	Pass

0.0144 68 0.0146 61 0.0148 56 0.0150 54 0.0152 50 0.0154 45 0.0156 41 0.0158 39 0.0160 36 0.0162 31 0.0164 26 0.0165 22 0.0168 18 0.0170 12 0.0172 7 0.0174 6 0.0175 5 0.0176 5 0.0180 5 0.0181 5 0.0182 5 0.0183 5 0.0184 5 0.0185 5 0.0186 5 0.0198 3 0.0209 3 0.0204 3 0.0205 3 0.0213 3 0.0214 3 0.0225 1 0.0227 1 0.0233 0 0.0235 0	29 27 23 21 19 16 14 13 11 96 20 00 00 00 00 00 00 00 00 00 00 00 00	42 44 44 46 46 46 43 44 45 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	Pass Pass Pass Pass Pass Pass Pass Pass
--	--	--	---

Basin B-1C 1/22/2021 8:05:37 PM Page 13

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0198 acre-feet
On-line facility target flow: 0.0221 cfs.
Adjusted for 15 min: 0.0221 cfs. 0.0124 cfs. Off-line facility target flow:

Adjusted for 15 min: 0.0124 cfs.

— WQ flow rate = 5.5gpm

Basin B-1C 1/22/2021 8:05:37 PM Page 14

Appendix Predeveloped Schematic

Basin 1 0.18ac			

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-1D

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/22/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute

Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-1D 1/22/2021 8:43:30 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.265

Pervious Total 0.265

Impervious Land Use acre

Impervious Total 0

Basin Total 0.265

Element Flows To:

Surface Interflow Groundwater

Basin B-1D 1/22/2021 8:43:30 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.056

Pervious Total 0.056

Impervious Land Use acre ROADS MOD 0.106 ROOF TOPS FLAT 0.083 SIDEWALKS MOD 0.019

Impervious Total 0.208

Basin Total 0.264

Element Flows To:

Surface Interflow Groundwater Tank 1 Tank 1

Basin B-1D 1/22/2021 8:43:30 PM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing Tank 1

facility depth

0

orifice dimensions

Depth:	4 ft.
Tank Type:	Circular
Diameter:	4 ft.
Length:	200 ft.

Infiltration On

Dimensions

Infiltration rate: 1
Infiltration safety factor: 1
Total Volume Infiltrated (ac-ft.):

Total Volume Infiltrated (ac-ft.): 25.31
Total Volume Through Riser (ac-ft.): 9.593
Total Volume Through Facility (ac-ft.): 34.903
Percent Infiltrated: 72.52
Total Precip Applied to Facility: 0

Total Evap From Facility: Discharge Structure

Riser Height: 3.9 ft. Riser Diameter: 24 in.

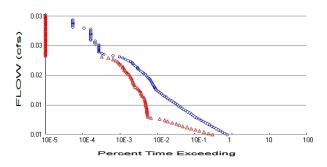
Orifice 1 Diameter: 0.5 in. Elevation:0 ft.

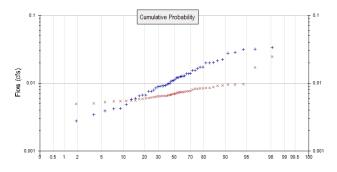
Orifice 2 Diameter: 0.625 in. Elevation:2.167 ft. Orifice 3 Diameter: 0.375 in. Elevation:2.96666666666 ft.

Element Flows To:

Outlet 1 Outlet 2

Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000 ` ′	0.000	0.00Ò ´
0.0444	0.003	0.000	0.001	0.003
0.0889	0.005	0.000	0.002	0.005
0.1333	0.006	0.000	0.002	0.006
0.1778	0.007	0.000	0.002	0.007
0.2222	0.008	0.001	0.003	0.008
0.2667	0.009	0.001	0.003	0.009
0.3111	0.009	0.002	0.003	0.009
0.3556	0.010	0.002	0.004	0.010
0.4000	0.011	0.003	0.004	0.011
0.4444	0.011	0.003	0.004	0.011
0.4889	0.012	0.004	0.004	0.012
0.5333	0.012	0.004	0.005	0.012
0.5778	0.012	0.005	0.005	0.013
0.6222	0.013	0.005	0.005	0.013
0.6667	0.013	0.006	0.005	0.013
0.7111	0.014	0.006	0.005	0.014
0.7556	0.014	0.007	0.005	0.014
0.8000	0.014	0.008	0.006	0.014
0.8444	0.015	0.008	0.006	0.015
0.8889	0.015	0.009	0.006	0.015
0.9333	0.015	0.010	0.006	0.015
0.9778	0.015	0.010	0.006	0.015
1.0222	0.016	0.011	0.006	0.016
1.0667	0.016	0.012	0.007	0.016
1.1111	0.016	0.013	0.007	0.016
1.1556	0.016	0.013	0.007	0.016


0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.014 0.014 0.014 0.013 0.013 0.014	0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.032 0.033 0.034 0.035 0.036 0.036 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.043 0.044 0.045 0.045 0.046 0.046 0.047 0.048 0.048 0.049 0.049 0.050 0.050 0.051 0.052 0.052 0.053	0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.011 0.012 0.013 0.014 0.015 0.015 0.016 0.015 0.016 0.017 0.017 0.018 0.019 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.022 0.023 0.023 0.024 0.024 0.025 0.025 0.026 0.026 0.027 0.027	0.018 0.018
0.013 0.013 0.012	0.051 0.052 0.052	0.026 0.026 0.027	0.018 0.018 0.018
	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.014 0.014 0.013 0.014 0.014 0.013 0.012 0.012 0.011 0.010 0.0010 0.0010 0.0010 0.0010 0.0010	0.018 0.024 0.018 0.024 0.018 0.025 0.018 0.025 0.018 0.026 0.018 0.027 0.018 0.028 0.018 0.029 0.018 0.030 0.018 0.031 0.018 0.032 0.018 0.033 0.018 0.035 0.018 0.035 0.018 0.036 0.017 0.036 0.017 0.036 0.017 0.038 0.017 0.038 0.017 0.038 0.017 0.038 0.017 0.040 0.017 0.040 0.017 0.040 0.017 0.041 0.016 0.043 0.016 0.044 0.016 0.044 0.015 0.046 0.015 0.048 0.014 0.050 0.013 <td>0.018 0.024 0.009 0.018 0.024 0.009 0.018 0.025 0.009 0.018 0.026 0.009 0.018 0.027 0.009 0.018 0.028 0.009 0.018 0.029 0.009 0.018 0.030 0.009 0.018 0.031 0.009 0.018 0.032 0.011 0.018 0.032 0.012 0.018 0.032 0.012 0.018 0.032 0.012 0.018 0.033 0.013 0.018 0.034 0.014 0.018 0.035 0.015 0.018 0.035 0.015 0.017 0.036 0.015 0.017 0.037 0.016 0.017 0.038 0.017 0.017 0.038 0.017 0.017 0.040 0.018 0.017 0.041 0.019 <td< td=""></td<></td>	0.018 0.024 0.009 0.018 0.024 0.009 0.018 0.025 0.009 0.018 0.026 0.009 0.018 0.027 0.009 0.018 0.028 0.009 0.018 0.029 0.009 0.018 0.030 0.009 0.018 0.031 0.009 0.018 0.032 0.011 0.018 0.032 0.012 0.018 0.032 0.012 0.018 0.032 0.012 0.018 0.033 0.013 0.018 0.034 0.014 0.018 0.035 0.015 0.018 0.035 0.015 0.017 0.036 0.015 0.017 0.037 0.016 0.017 0.038 0.017 0.017 0.038 0.017 0.017 0.040 0.018 0.017 0.041 0.019 <td< td=""></td<>

3.7778	0.008	0.056	0.030	0.018
3.8222	0.007	0.056	0.030	0.018
3.8667	0.006	0.057	0.030	0.018
3.9111	0.005	0.057	0.056	0.018
3.9556	0.003	0.057	0.309	0.018
4.0000	0.000	0.057	0.702	0.018
4.0444	0.000	0.000	1.194	0.018
		\		

- facility volume = 2483cf

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.265 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1
Total Pervious Area: 0.056
Total Impervious Area: 0.208

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.011006

 5 year
 0.018111

 10 year
 0.0231

 25 year
 0.02957

 50 year
 0.034451

 100 year
 0.03935

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.006929

 5 year
 0.008932

 10 year
 0.010429

 25 year
 0.012521

 50 year
 0.014232

 100 year
 0.016078

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.011	0.007
1957	0.020	0.009
1958	0.007	0.005
1959	0.009	0.006
1960	0.016	0.008
1961	0.010	0.006
1962	0.003	0.005
1963	0.020	0.009
1964	0.012	0.006
1965	0.013	0.007

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	0.007 0.010 0.008 0.005 0.009 0.011 0.022 0.009 0.008 0.032 0.015 0.003 0.012 0.020 0.009 0.021 0.008 0.016 0.013 0.016 0.013 0.017 0.031 0.004 0.017 0.031 0.006 0.009 0.027 0.034	0.006 0.007 0.006 0.005 0.006 0.007 0.008 0.007 0.006 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.009 0.009 0.008 0.009 0.008 0.006 0.001 0.017
1991	0.034	0.017
1992	0.006	0.006
1993	0.004	0.005
1994	0.004	0.005
1995	0.011	0.008
1996	0.017	0.008
1997	0.010	0.006
1998	0.014	0.007
1999	0.012	0.008
2000	0.014	0.008
2001	0.002	0.005
2002	0.013	0.010
2003	0.006	0.005
2003	0.006	0.003
2004	0.011	0.009
2005	0.009	0.006
2006	0.013	0.008
2007	0.014	0.009
2008	0.029	0.025

Ranked Annual Peaks

Natikeu Attitual Feaks					
Ranked Annual	Peaks for Prede	eveloped and Mitigated.	POC #1		
Rank	Predeveloped	Mitigated			
1	0.0338	0.0248			
2	0.0317	0.0171			
3	0.0314	0.0097			
4	0.0285	0.0096			
5	0.0274	0.0095			
6	0.0223	0.0092			
7	0.0213	0.0091			
8	0.0201	0.0087			
9	0.0200	0.0085			
10	0.0200	0.0085			
11	0.0172	0.0084			

0.0172 0.0163 0.0155 0.0154 0.0139 0.0137 0.0137 0.0129 0.0126 0.0126 0.0121 0.0120 0.0120 0.0114 0.0110 0.0109 0.0107 0.0100 0.0097 0.0096 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0096 0.0076 0.0076 0.0076 0.0067 0.0067 0.0065 0.0060 0.0058 0.0042 0.0042	0.0083 0.0083 0.0083 0.0081 0.0077 0.0076 0.0075 0.0074 0.0074 0.0073 0.0072 0.0072 0.0072 0.0071 0.0070 0.0069 0.0068 0.0068 0.0065
0.0048	0.0055
	0.0163 0.0155 0.0154 0.0139 0.0137 0.0129 0.0127 0.0126 0.0126 0.0121 0.0120 0.0120 0.0114 0.0110 0.0109 0.0107 0.0100 0.0097 0.0096 0.0092 0.0092 0.0092 0.0092 0.0098 0.0085 0.0079 0.0067 0.0067 0.0067 0.0065 0.0067 0.0065 0.0068 0.0042 0.0042 0.0039 0.0034 0.0038

Basin B-1D 1/22/2021 8:43:55 PM Page 11

Duration Flows

The Facility PASSED

	.	B.8.*.	_	D /= "
Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0055	13773	5579	40	Pass
0.0058	11833	4338	36	Pass
0.0061	10298	3306	32	Pass
0.0064	9030	2488	27	Pass
0.0067	7962	1937	24	Pass
0.0070	6938	1499	21	Pass
0.0073	6105	1170	19	Pass
0.0075	5336	902	16	Pass
0.0078	4685	721 507	15	Pass
0.0081	4131	597	14	Pass
0.0084	3609	460	12	Pass
0.0087	3172	350	11	Pass
0.0090	2782	293	10	Pass
0.0093	2418	214	8	Pass
0.0096	2111	126	5	Pass
0.0099	1873	105	5	Pass
0.0102	1679	103	6	Pass
0.0105	1505	100	6	Pass
0.0108	1368	99	7	Pass
0.0111	1188	98	8	Pass
0.0114	1062	97	9	Pass
0.0116	937	97	10	Pass
0.0119	845	96	11	Pass
0.0122	763	94	12	Pass
0.0125	688	92	13	Pass
0.0128	632	91	14	Pass
0.0131	570	91	15	Pass
0.0134	510	89	17	Pass
0.0137	449	87	19	Pass
0.0140	402	86	21	Pass
0.0143	355	84	23	Pass
0.0146	321	81	25	Pass
0.0149	294	74 70	25	Pass
0.0152	260	72 60	27	Pass
0.0154	241	69	28	Pass
0.0157	217	68	31	Pass
0.0160	196	64	32	Pass
0.0163	178	61 57	34	Pass
0.0166	168	57 54	33	Pass
0.0169 0.0172	161 155	54 47	33 30	Pass
	155	47 45	30	Pass
0.0175 0.0178	146	45 44	31	Pass
0.0178	140 135	44 42	31	Pass
	135 129	42 41	31	Pass
0.0184 0.0187	129	40	32	Pass
	117		33	Pass
0.0190 0.0192	109	39 38	33 34	Pass
0.0192	109	36 36	3 4 35	Pass
0.0195	96	36 35	35 36	Pass
			36 37	Pass
0.0201	88 91	33	37 37	Pass
0.0204	81 76	30		Pass
0.0207	76	28	36	Pass

0.0210 0.0213 0.0216 0.0219 0.0222 0.0225 0.0228 0.0230 0.0233 0.0236 0.0239 0.0242 0.0245 0.0257 0.0260 0.0263 0.0266 0.0268 0.0271 0.0274 0.0277 0.0280 0.0283 0.0288 0.0292 0.0295 0.0298 0.0301 0.0304 0.0309 0.0315 0.0315 0.0315 0.0327 0.0327 0.0327 0.0333 0.0336 0.0339 0.0339 0.0342 0.0345	681640519616282 1176555555544433333333211111110000	26 24 22 20 18 17 16 14 12 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 39 40 44 43 44 45 46 40 33 00 00 00 00 00 00 00 00 00 00 00 00	Pass Pass Pass Pass Pass Pass Pass Pass
--	---	--	--	--

Basin B-1D 1/22/2021 8:43:55 PM Page 13

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0288 acre-feet
On-line facility target flow: 0.032 cfs.
Adjusted for 15 min: 0.032 cfs.

Off-line facility target flow: 0.0181 cfs. Adjusted for 15 min: 0.0181 cfs.


WQ flow rate = 8.2gpm

Basin B-1D 1/22/2021 8:43:55 PM Page 14

Appendix Predeveloped Schematic

Basin 1 0.27ac		

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-2A

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute

Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-2A 1/25/2021 9:38:43 AM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 2A

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.537

Pervious Total 0.537

Impervious Land Use acre

Impervious Total 0

Basin Total 0.537

Element Flows To:

Surface Interflow Groundwater

Basin B-2A 1/25/2021 9:38:43 AM Page 3

Mitigated Land Use

Basin 2A

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.212

Pervious Total 0.212

Impervious Land Use acre ROADS MOD 0.14 ROOF TOPS FLAT 0.161 SIDEWALKS MOD 0.024

Impervious Total 0.325

Basin Total 0.537

Element Flows To:

Surface Interflow Groundwater Tank 1 Tank 1

Basin B-2A 1/25/2021 9:38:43 AM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing

Tank 1

Dimensions

Depth: 4 ft.

Tank Type: Circular

Diameter: 4 ft.

Length: 310 ft.

Infiltration On

Infiltration rate: 1
Infiltration safety factor: 1
Tatal Values Infiltrated (20 ft)

Total Volume Infiltrated (ac-ft.):

Total Volume Through Riser (ac-ft.):

Total Volume Through Facility (ac-ft.):

Percent Infiltrated:

Total Precip Applied to Facility:

Total Evap From Facility:

43.661

20.192

63.853

68.38

Total Precip Applied to Facility:

0

Discharge Structure

Riser Height: 3.9 ft. Riser Diameter: 24 in.

Orifice 1 Diameter: 0.6875 in Elevation: 0 ft.

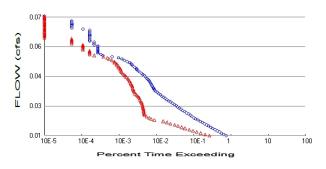
Orifice 2 Diameter: 0.84 in. Elevation:2.668 ft.
Orifice 3 Diameter: 0.5625 in Elevation:3.53791666666669 ft.

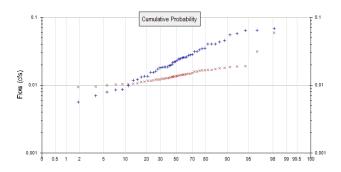
Element Flows To:

Outlet 1 Outlet 2

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.002	0.006
0.0889	0.008	0.000	0.003	0.008
0.1333	0.010	0.000	0.004	0.010
0.1778	0.011	0.001	0.005	0.011
0.2222	0.013	0.002	0.006	0.013
0.2667	0.014	0.002	0.006	0.014
0.3111	0.015	0.003	0.007	0.015
0.3556	0.016	0.003	0.007	0.016
0.4000	0.017	0.004	0.008	0.017
0.4444	0.017	0.005	0.008	0.018
0.4889	0.018	0.006	0.009	0.018
0.5333	0.019	0.007	0.009	0.019
0.5778	0.020	0.008	0.009	0.020
0.6222	0.020	0.008	0.010	0.020
0.6667	0.021	0.009	0.010	0.021
0.7111	0.021	0.010	0.010	0.021
0.7556	0.022	0.011	0.011	0.022
0.8000	0.022	0.012	0.011	0.023
0.8444	0.023	0.013	0.011	0.023
0.8889	0.023	0.014	0.012	0.023
0.9333	0.024	0.015	0.012	0.024
0.9778	0.024	0.016	0.012	0.024
1.0222	0.024	0.018	0.013	0.025
1.0667	0.025	0.019	0.013	0.025
1.1111	0.025	0.020	0.013	0.025
1.1556	0.025	0.021	0.013	0.026


facility depth


orifice dimensions

3.7778 3.8222 3.8667 3.9111 3.9556 4.0000 4.0444	0.013 0.011 0.010 0.008 0.006 0.000 0.000	0.087 0.088 0.088 0.088 0.089 0.089	0.049 0.050 0.051 0.076 0.330 0.723 1.216	0.028 0.028 0.028 0.028 0.028 0.028 0.028

- facility volume = 3876cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.537 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.212 Total Impervious Area: 0.325

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.022304

 5 year
 0.0367

 10 year
 0.04681

 25 year
 0.059922

 50 year
 0.069812

 100 year
 0.079739

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.013451

 5 year
 0.01771

 10 year
 0.020947

 25 year
 0.025537

 50 year
 0.029337

 100 year
 0.033482

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.022	0.013
1957	0.041	0.018
1958	0.014	0.010
1959	0.018	0.013
1960	0.031	0.016
1961	0.019	0.012
1962	0.007	0.010
1963	0.041	0.018
1964	0.024	0.012
1965	0.025	0.013

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002	0.014 0.020 0.015 0.010 0.017 0.022 0.045 0.019 0.015 0.064 0.031 0.006 0.025 0.041 0.019 0.043 0.016 0.033 0.026 0.009 0.035 0.064 0.013 0.018 0.018 0.018 0.012 0.009 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012 0.009 0.008 0.012	0.011 0.014 0.013 0.009 0.012 0.014 0.015 0.011 0.014 0.013 0.015 0.014 0.015 0.016 0.017 0.016 0.013 0.015 0.016 0.013 0.015 0.016 0.013 0.019 0.019 0.019 0.019
1999 2000	0.024 0.028 0.004	0.015 0.015 0.010

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0685	0.0595
2	0.0642	0.0315
3	0.0636	0.0191
4	0.0578	0.0188
5	0.0556	0.0186
6	0.0451	0.0179
7	0.0433	0.0179
8	0.0407	0.0173
9	0.0406	0.0168
10	0.0405	0.0167
11	0.0349	0.0166

0.0348 0.0330 0.0314 0.0312 0.0282 0.0278 0.0278 0.0262 0.0257 0.0256 0.0254 0.0244 0.0244 0.0232 0.0222 0.0220 0.0217 0.0202 0.0197 0.0194 0.0186 0.0186 0.0188 0.0180 0.0173 0.0180 0.0173 0.0160 0.0154 0.0154 0.0154 0.0135 0.0131 0.0131 0.0121 0.0118 0.0098 0.0085 0.0085	0.0164 0.0162 0.0158 0.0158 0.0153 0.0149 0.0147 0.0147 0.0145 0.0144 0.0139 0.0138 0.0136 0.0135 0.0133 0.0131 0.0128 0.0126 0.0126 0.0125 0.0125 0.0122 0.0121 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0112 0.0103 0.0103
0.0098 0.0086	0.0104 0.0103
	0.0330 0.0314 0.0312 0.0282 0.0278 0.0278 0.0257 0.0256 0.0254 0.0244 0.0244 0.0232 0.0222 0.0220 0.0217 0.0202 0.0197 0.0194 0.0186 0.0186 0.0188 0.0180 0.0173 0.0160 0.0154 0.0154 0.0154 0.0135 0.0135 0.0131 0.0121 0.0131 0.0121 0.0098 0.0085 0.0089 0.0069 0.0056

Basin B-2A 1/25/2021 9:39:08 AM Page 11

Duration Flows

The Facility PASSED

Flow(cfs) 0.0112	Predev 13781	Mit 4875	Percentage 35	Pass
0.0117	11838	3749	31	Pass
0.0123	10313	2882	27	Pass
0.0129	9054	2236	24	Pass
0.0135	7964	1777	22	Pass
0.0141	6949	1407	20	Pass
0.0147	6112	1097	17	Pass
0.0153	5343	885	16	Pass
0.0159	4685	703	15	Pass
0.0165	4131	575	13	Pass
0.0171	3613	442	12	Pass
0.0177	3184	360	11	Pass
0.0183	2782	286	10	Pass
0.0189	2418	164	6	Pass
0.0194	2113	135	6	Pass
0.0200	1879	119	6	Pass
0.0206	1679	102	6	Pass
0.0212	1504	89	5	Pass
0.0218	1368	87	6	Pass
0.0216	1187	86	7	Pass
0.0230	1062	86	8	Pass
0.0236	937	85	9	Pass
0.0230	844	83	9	Pass
0.0242	761	82	10	Pass
0.0254	688	80	11	Pass
0.0260	632	80	12	Pass
0.0266	570	78	13	Pass
0.0272	506	76 76	15	Pass
0.0272	449	76 74	16	Pass
0.0283	402	71	17	Pass
0.0289	355	68	19	Pass
0.0205	321	66	20	Pass
0.0301	292	63	21	Pass
0.0307	260	59	22	Pass
0.0313	241	55 55	22	Pass
0.0313	216	50	23	
0.0319	196	48	24	Pass Pass
0.0323	178	46	25	Pass
0.0337	168	45	26	Pass
0.0343	161	44	27	Pass
0.0349	154	43	27	Pass
0.0354	146	42	28	Pass
0.0360	140	41	29	Pass
0.0366	135	39	28	Pass
0.0372	129	38	29	Pass
	129	36	29	Pass
0.0378 0.0384	122 117	35	29 29	Pass
		33	30	Pass
0.0390	109	33 32	30	Pass
0.0396	102		30	Pass
0.0402	96	29		Pass
0.0408	88	27	30	Pass
0.0414	81	25	30	Pass
0.0420	76	23	30	Pass

0.0426 68 0.0431 61 0.0437 56 0.0443 54 0.0449 50 0.0455 45 0.0461 41 0.0467 39 0.0473 36 0.0479 31 0.0485 26 0.0497 18 0.0503 12 0.0509 7 0.0514 6 0.0520 5 0.0532 5 0.0538 5 0.0544 5 0.0550 5 0.0562 4 0.0586 3 0.0586 3 0.0586 3 0.0587 3 0.0691 3 0.0627 3 0.0633 3 0.0645 1 0.0667 1 0.0668 1 0.0668 0 0.0692 0 0.0698 0	22 120 18 16 14 11 10 10 11 11 11 10 10 10 10 10 10 10	32 34 35 37 36 40 39 41 38 45 46 45 50 60 60 40 40 40 50 25 25 33 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pass Pass Pass Pass Pass Pass Pass Pass
--	---	--	---

Basin B-2A 1/25/2021 9:39:08 AM Page 13

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0497 acre-feet
On-line facility target flow: 0.0501 cfs.
Adjusted for 15 min: 0.0501 cfs. Off-line facility target flow: Adjusted for 15 min: 0.0281 cfs. 0.0281 cfs.

- WQ flow rate = 12.6gpm

Appendix Predeveloped Schematic

Basin 2A 0.54ac		

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-2B

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30

Timestep: Hourly Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-2B 1/25/2021 10:35:22 AM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 2B

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.525

Pervious Total 0.525

Impervious Land Use acre

Impervious Total 0

Basin Total 0.525

Element Flows To:

Surface Interflow Groundwater

Basin B-2B 1/25/2021 10:35:22 AM Page 3

Mitigated Land Use

Basin 2B

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.123

Pervious Total 0.123

Impervious Land Use acre ROADS MOD 0.197 ROOF TOPS FLAT 0.173 SIDEWALKS MOD 0.032

Impervious Total 0.402

Basin Total 0.525

Element Flows To:

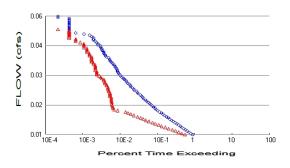
Surface Interflow Groundwater Tank 1 Tank 1

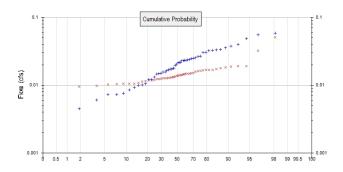
Basin B-2B 1/25/2021 10:35:22 AM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing

facility depth Tank 1 **Dimensions** Depth: 4 ft. Tank Type: Circular Diameter: 4 ft. Length: 360 ft. Infiltration On Infiltration rate: 1 Infiltration safety factor: Total Volume Infiltrated (ac-ft.): 48.562 Total Volume Through Riser (ac-ft.): 19.396 Total Volume Through Facility (ac-ft.): 67.958 Percent Infiltrated: 71.46 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 orifice dimensions Discharge Structure Riser Height: 3.9 ft. Riser Diameter: 24 in. Orifice 1 Diameter: 0.6875 inElevation:0 ft. Orifice 2 Diameter: 0.75 in. Elevation: 2.388 ft. Orifice 3 Diameter: Elevation: 3.26291666666669 ft. 0.5 in. Element Flows To: Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.002	0.007
0.0889	0.009	0.000	0.003	0.009
0.1333	0.011	0.001	0.004	0.012
0.1778	0.013	0.001	0.005	0.013
0.2222	0.015	0.002	0.006	0.015
0.2667	0.016	0.003	0.006	0.016
0.3111	0.017	0.003	0.007	0.017
0.3556	0.018	0.004	0.007	0.019
0.4000	0.019	0.005	0.008	0.020
0.4444	0.020	0.006	0.008	0.021
0.4889	0.021	0.007	0.009	0.021
0.5333	0.022	0.008	0.009	0.022
0.5778	0.023	0.009	0.009	0.023
0.6222	0.024	0.010	0.010	0.024
0.6667	0.024	0.011	0.010	0.024
0.7111	0.025	0.012	0.010	0.025
0.7556	0.025	0.013	0.011	0.026
0.8000	0.026	0.014	0.011	0.026
0.8444	0.027	0.016	0.011	0.027
0.8889	0.027	0.017	0.012	0.027
0.9333	0.028	0.018	0.012	0.028
0.9778	0.028	0.019	0.012	0.028
1.0222	0.028	0.020	0.013	0.029
1.0667	0.029	0.022	0.013	0.029
1.1111	0.029	0.023	0.013	0.029
1.1556	0.030	0.024	0.013	0.030

0.030 0.030 0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.031 0.031 0.030 0.030 0.030 0.030 0.030 0.030 0.029 0.028 0.028 0.028 0.028 0.027 0.026 0.025 0.025 0.025 0.024 0.023 0.021	0.026 0.027 0.028 0.030 0.031 0.033 0.034 0.035 0.037 0.038 0.040 0.041 0.043 0.044 0.046 0.047 0.049 0.050 0.051 0.053 0.054 0.056 0.057 0.059 0.060 0.062 0.063 0.065 0.066 0.067 0.069 0.070 0.072 0.073 0.074 0.076 0.077 0.079 0.080 0.081 0.082 0.084 0.085 0.086 0.087 0.089 0.090 0.091 0.092 0.093 0.094 0.095 0.096	0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.021 0.023 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.031 0.031 0.032 0.033 0.035 0.036 0.036 0.036 0.037 0.038 0.040 0.041 0.042 0.043	0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.033
0.024 0.023 0.022 0.021 0.020 0.019 0.018 0.017	0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.100	0.041 0.042 0.042 0.043 0.044 0.045 0.045 0.046	0.033 0.033 0.033
	0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.031	0.030 0.028 0.031 0.030 0.031 0.031 0.031 0.033 0.031 0.034 0.032 0.035 0.032 0.037 0.032 0.040 0.032 0.041 0.032 0.044 0.032 0.044 0.032 0.044 0.032 0.044 0.032 0.044 0.033 0.047 0.033 0.047 0.033 0.050 0.033 0.051 0.033 0.054 0.033 0.054 0.032 0.056 0.032 0.057 0.032 0.060 0.032 0.062 0.032 0.065 0.032 0.066 0.032 0.066 0.032 0.066 0.032 0.066 0.031 0.070 0.031 0.072 0.031 <td>0.030 0.027 0.014 0.031 0.030 0.014 0.031 0.031 0.015 0.031 0.033 0.015 0.031 0.034 0.015 0.032 0.035 0.015 0.032 0.037 0.016 0.032 0.040 0.016 0.032 0.040 0.016 0.032 0.041 0.016 0.032 0.041 0.016 0.032 0.044 0.017 0.032 0.044 0.017 0.032 0.044 0.017 0.032 0.044 0.017 0.033 0.047 0.017 0.033 0.047 0.017 0.033 0.050 0.017 0.033 0.051 0.018 0.033 0.051 0.018 0.033 0.054 0.018 0.032 0.059 0.018 0.032 0.060 0.019 <td< td=""></td<></td>	0.030 0.027 0.014 0.031 0.030 0.014 0.031 0.031 0.015 0.031 0.033 0.015 0.031 0.034 0.015 0.032 0.035 0.015 0.032 0.037 0.016 0.032 0.040 0.016 0.032 0.040 0.016 0.032 0.041 0.016 0.032 0.041 0.016 0.032 0.044 0.017 0.032 0.044 0.017 0.032 0.044 0.017 0.032 0.044 0.017 0.033 0.047 0.017 0.033 0.047 0.017 0.033 0.050 0.017 0.033 0.051 0.018 0.033 0.051 0.018 0.033 0.054 0.018 0.032 0.059 0.018 0.032 0.060 0.019 <td< td=""></td<>

3.7778 3.8222 3.8667 3.9111 3.9556 4.0000 4.0444	0.015 0.013 0.011 0.009 0.006 0.000 0.000	0.101 0.102 0.102 0.103 0.103 0.103	0.047 0.048 0.049 0.074 0.328 0.721 1.213	0.033 0.033 0.033 0.033 0.033 0.033	
4.0444 0.000 0.000 1.213 0.033 facility volume = 44876				87cf	

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.525 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.123 Total Impervious Area: 0.402

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.019051

 5 year
 0.030782

 10 year
 0.038696

 25 year
 0.048601

 50 year
 0.055828

 100 year
 0.062888

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.013584

 5 year
 0.017616

 10 year
 0.020644

 25 year
 0.024893

 50 year
 0.028379

 100 year
 0.032153

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.022	0.013
1957	0.040	0.018
1958	0.012	0.010
1959	0.015	0.013
1960	0.027	0.016
1961	0.018	0.012
1962	0.006	0.011
1963	0.033	0.018
1964	0.023	0.013
1965	0.021	0.013

0.010 0.020 0.015 0.008 0.016 0.022 0.032 0.017 0.015 0.012 0.027 0.005 0.026 0.023 0.017 0.031 0.016 0.031 0.023 0.007 0.033 0.049 0.010 0.013 0.038 0.055 0.010 0.038 0.055 0.010 0.008 0.007 0.020 0.033 0.018 0.024 0.023 0.024 0.023 0.024 0.009 0.017	0.011 0.015 0.013 0.009 0.012 0.014 0.017 0.013 0.011 0.013 0.010 0.014 0.014 0.015 0.015 0.017 0.016 0.017 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
0.003 0.024	0.010 0.019
	0.020 0.015 0.008 0.016 0.022 0.032 0.017 0.015 0.027 0.005 0.026 0.023 0.017 0.031 0.016 0.031 0.023 0.007 0.033 0.049 0.010 0.013 0.049 0.010 0.013 0.055 0.010 0.008 0.007 0.038 0.055 0.010 0.038 0.024 0.024 0.023 0.025 0.025 0.025 0.025 0.025

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0584	0.0508
2	0.0550	0.0322
3	0.0488	0.0190
4	0.0398	0.0190
5	0.0379	0.0188
6	0.0358	0.0182
7	0.0334	0.0179
8	0.0332	0.0173
9	0.0329	0.0169
10	0.0321	0.0168
11	0.0307	0.0167

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	0.0305 0.0268 0.0265 0.0255 0.0251 0.0246 0.0240 0.0235 0.0231 0.0230 0.0229 0.0217 0.0217 0.0213 0.0205 0.0195 0.0178 0.0177 0.0173 0.0172 0.0168 0.0163 0.0156 0.0156 0.0156 0.0149 0.0147 0.0146 0.0132 0.0149 0.0147 0.0146 0.0132 0.0121 0.0121 0.0105 0.0101 0.0099 0.0092 0.0084 0.0073 0.0073	0.0165 0.0164 0.0162 0.0160 0.0153 0.0149 0.0148 0.0147 0.0145 0.0143 0.0142 0.0142 0.0139 0.0139 0.0137 0.0133 0.0131 0.0128 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0123 0.0123 0.0123 0.0123 0.0120 0.0118 0.0117 0.0115 0.0113 0.0106 0.0106 0.0106 0.0106 0.0107
48	0.0076	0.0105

Duration Flows

The Facility PASSED

Flow(cfs) 0.0095	Predev 4148	Mit 2543	Percentage 61	Pass/Fail
0.0100	3705	2103	56	Pass
0.0105	3289	1738	52	Pass
0.0109	2913	1420	48	Pass
0.0114	2624	1169	44	Pass
0.0119	2359	928	39	Pass
0.0123	2122	758	35	Pass
0.0128	1935	602	31	Pass
0.0133	1718	502	29	Pass
0.0137	1552	411	26	Pass
0.0142	1387	343	24	Pass
0.0147	1241	276	22	Pass
0.0151	1116	229	20	Pass
0.0156	999	193	19	Pass
0.0161	911	165	18	Pass
0.0165	821 727	137	16	Pass
0.0170 0.0175		109	14	Pass
0.0175	651 596	91 76	13 12	Pass Pass
0.0179	534	65	12	Pass
0.0189	482	40	8	Pass
0.0193	436	32	7	Pass
0.0198	404	30	7	Pass
0.0203	371	30	8	Pass
0.0208	341	29	8	Pass
0.0212	311	28	9	Pass
0.0217	291	28	9	Pass
0.0222	261	28	10	Pass
0.0226	240	27	11	Pass
0.0231	221	27	12	Pass
0.0236	202	27	13	Pass
0.0240	188	27	14	Pass
0.0245	175	25	14	Pass
0.0250	163	25	15	Pass
0.0254	147	25	17	Pass
0.0259	135	25	18	Pass
0.0264	128	23	17	Pass
0.0268	113	23	20	Pass
0.0273	108	22	20	Pass
0.0278	100	22	22	Pass
0.0282 0.0287	92 88	22 20	23 22	Pass Pass
0.0292	83	20	24	Pass
0.0292	74	18	24	Pass
0.0301	74 70	18	25	Pass
0.0306	67	17	25	Pass
0.0310	61	17	27	Pass
0.0315	57	15	26	Pass
0.0320	52	14	26	Pass
0.0324	49	13	26	Pass
0.0329	46	11	23	Pass
0.0334	43	11	25	Pass
0.0338	41	11	26	Pass

0.0343	40	11	27	Pass
0.0348	39	10	25	Pass
0.0352	37	10	27	Pass
0.0357	36	10	27	Pass
0.0362	34	10	29	Pass
0.0367	32	10	31	Pass
			30	
0.0371	30	9		Pass
0.0376	28	9	32	Pass
0.0381	26	8	30	Pass
0.0385		8	32	Pass
		0		
0.0390	24	8	33	Pass
0.0395	23	8	34	Pass
0.0399	20	8	40	Pass
		7	36	
0.0404	19			Pass
0.0409	18	7	38	Pass
0.0413	17	7	41	Pass
0.0418	17	6	35	Pass
		0		
0.0423	16	6	37	Pass
0.0427	15	6	40	Pass
0.0432	15	6	40	Pass
0.0437	14	5	35	Pass
		5		
0.0441	14	5	35	Pass
0.0446	12	5 5	41	Pass
0.0451	12	5	41	Pass
		4		
0.0455	11	4	36	Pass
0.0460	10	3	30	Pass
0.0465	9	3	33	Pass
0.0469	9	3	33	Pass
		5		
0.0474	9	2	22	Pass
0.0479	8	4 3 3 2 2 2 2 2 2 2 1	25	Pass
0.0483	7	2	28	Pass
0.0488		2	40	Pass
	5 3 2 2 2 2	2		
0.0493	3	2	66	Pass
0.0497	2	2	100	Pass
0.0502	2	2	100	Pass
0.0507	2	1		
	2		50	Pass
0.0512	2	0	0	Pass
0.0516	2	0	0	Pass
0.0521	2	Ö	Õ	Pass
	2		0 0	
0.0526	2	0	Ū	Pass
0.0530	2	0	0	Pass
0.0535	2 2 2 2 2 2 2 2	0	0 0 0 0	Pass
0.0540	2	ŏ	ñ	Pass
0.0040	2		0	
0.0544	2	0	Ū	Pass
0.0549	2	0	0	Pass
0.0554	1	Ö	Ö	Pass
	1	Ö	Ö	
0.0558	I	U	U	Pass

Basin B-2B 1/25/2021 10:35:30 AM Page 13

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0563 acre-feet
On-line facility target flow: 0.0587 cfs.
Adjusted for 15 min: 0.0645 cfs.

Off-line facility target flow: 0.0331 cfs.
Adjusted for 15 min: 0.0365 cfs.

– WQ flow rate = 14.9gpm

Appendix Predeveloped Schematic

Rasin 2R		
Basin 2B 0.53ac		

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-2C

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-2C 1/25/2021 11:16:22 AM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 2C

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.469

Pervious Total 0.469

Impervious Land Use acre

Impervious Total 0

Basin Total 0.469

Element Flows To:

Surface Interflow Groundwater

Basin B-2C 1/25/2021 11:16:22 AM Page 3

Mitigated Land Use

Basin 2C

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.134

Pervious Total 0.134

Impervious Land Use acre ROADS MOD 0.146 ROOF TOPS FLAT 0.161 SIDEWALKS MOD 0.028

Impervious Total 0.335

Basin Total 0.469

Element Flows To:

Surface Interflow Groundwater Tank 1 Tank 1

Basin B-2C 1/25/2021 11:16:22 AM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing

Tank 1

Dimensions

Depth: 4 ft.

Tank Type: Circular
Diameter: 4 ft.

Length: 350 ft.

Infiltration On

Infiltration rate: 1
Infiltration safety factor: 1
Total Volume Infiltrated (ac-ft.):

Total Volume Infiltrated (ac-ft.): 54.787
Total Volume Through Riser (ac-ft.): 4.688
Total Volume Through Facility (ac-ft.): 59.475
Percent Infiltrated: 92.12
Total Precip Applied to Facility: 0
Total Evap From Facility: 0

Discharge Structure

Riser Height: 3.9 ft. Riser Diameter: 24 in.

Orifice 1 Diameter: 0.3125 in Elevation: 0 ft.

Orifice 2 Diameter: 0.75 in. Elevation:2.598 ft.

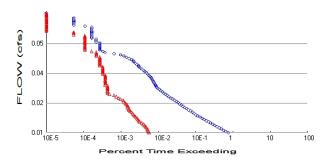
Orifice 3 Diameter: 0.5 in. Elevation:3.47125000000003 ft.

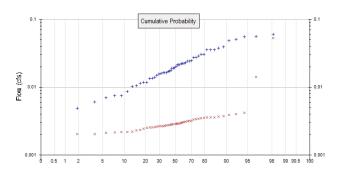
Facility Depth

Orifice Diameter

Element Flows To:

Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge	(cfs) Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.006	0.000	0.000	0.006
0.0889	0.009	0.000	0.000	0.009
0.1333	0.011	0.001	0.001	0.011
0.1778	0.013	0.001	0.001	0.013
0.2222	0.014	0.002	0.001	0.014
0.2667	0.016	0.002	0.001	0.016
0.3111	0.017	0.003	0.001	0.017
0.3556	0.018	0.004	0.001	0.018
0.4000	0.019	0.005	0.001	0.019
0.4444	0.020	0.006	0.001	0.020
0.4889	0.021	0.007	0.001	0.021
0.5333	0.021	0.008	0.001	0.022
0.5778	0.022	0.009	0.002	0.022
0.6222	0.023	0.010	0.002	0.023
0.6667	0.024	0.011	0.002	0.024
0.7111	0.024	0.012	0.002	0.024
0.7556	0.025	0.013	0.002	0.025
0.8000	0.025	0.014	0.002	0.025
0.8444	0.026	0.015	0.002	0.026
0.8889	0.026	0.016	0.002	0.026
0.9333	0.027	0.017	0.002	0.027
0.9778	0.027	0.019	0.002	0.027
1.0222	0.028	0.020	0.002	0.028
1.0667	0.028	0.021	0.002	0.028
1.1111	0.028	0.022	0.002	0.029
1.1556	0.029	0.024	0.002	0.029

3.7778 3.8222 3.8667 3.9111 3.9556 4.0000	0.014 0.013 0.011 0.009 0.006 0.000	0.098 0.099 0.099 0.100 0.100	0.025 0.026 0.026 0.052 0.305 0.698	0.032 0.032 0.032 0.032 0.032
4.0444	0.000	0.000	1.190	0.032

– Facility Volume = 4400cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.469
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.134 Total Impervious Area: 0.335

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.019479

 5 year
 0.032052

 10 year
 0.040882

 25 year
 0.052334

 50 year
 0.060972

 100 year
 0.069642

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.002976

 5 year
 0.004612

 10 year
 0.005939

 25 year
 0.007925

 50 year
 0.009649

 100 year
 0.0116

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.019	0.003
1957	0.035	0.004
1958	0.012	0.002
1959	0.016	0.003
1960	0.027	0.003
1961	0.017	0.003
1962	0.006	0.002
1963	0.036	0.004
1964	0.021	0.003
1965	0.022	0.003

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999	0.012 0.018 0.013 0.009 0.015 0.019 0.039 0.016 0.013 0.056 0.027 0.005 0.021 0.035 0.016 0.038 0.014 0.029 0.022 0.008 0.014 0.029 0.022 0.008 0.011 0.016 0.049 0.049 0.049 0.007 0.007 0.007 0.007 0.007 0.0019 0.0017 0.0024 0.0021	0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003
1995 1996 1997	0.019 0.031 0.017 0.024	0.003 0.004 0.003 0.003

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.0598	0.0532
2	0.0561	0.0142
3	0.0556	0.0042
4	0.0504	0.0040
5	0.0486	0.0039
6	0.0394	0.0037
7	0.0378	0.0037
8	0.0355	0.0036
9	0.0354	0.0036
10	0.0354	0.0036
11	0.0305	0.0035

0.0304 0.0288 0.0274 0.0273 0.0246 0.0243 0.0229 0.0225 0.0223 0.0222 0.0215 0.0213 0.0202 0.0194 0.0192 0.0190 0.0177 0.0172 0.0170 0.0163 0.0162 0.0162 0.0159 0.0157 0.0151 0.0151 0.0140 0.0135 0.0135 0.0118 0.0118 0.0118 0.0114 0.0106 0.0103 0.0086 0.0075 0.0074	0.0035 0.0034 0.0034 0.0033 0.0032 0.0032 0.0031 0.0030 0.0030 0.0029 0.0029 0.0029 0.0029 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0025 0.0026 0.0026 0.0026 0.0025 0.0024 0.0024 0.0023 0.0022
0.0086 0.0075	0.0022 0.0022
	0.0288 0.0274 0.0273 0.0246 0.0243 0.0229 0.0225 0.0223 0.0222 0.0215 0.0213 0.0202 0.0194 0.0192 0.0190 0.0177 0.0172 0.0170 0.0163 0.0162 0.0162 0.0159 0.0157 0.0151 0.0140 0.0159 0.0157 0.0151 0.0140 0.0135 0.0118 0.0118 0.0118 0.0114 0.0106 0.0103 0.0086 0.0075 0.0074 0.0069 0.0061 0.0049

Basin B-2C 1/25/2021 11:16:47 AM Page 11

Duration Flows

The Facility PASSED

Flow(cfs) 0.0097 0.0103 0.0108 0.0113 0.0118 0.0123 0.0128 0.0134 0.0139 0.0144 0.0159 0.0165 0.0170 0.0175 0.0180 0.0185 0.0191 0.0206 0.0211 0.0206 0.0211 0.0216 0.0222 0.0227 0.0232 0.0237 0.0242 0.0247 0.0253 0.0258 0.0268 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0268 0.0273 0.0258 0.0258 0.0258 0.0268 0.0273 0.0258	Predev 13775 11853 10311 9036 7978 6954 6112 5336 4689 4133 3611 3174 2788 2423 2113 1875 1683 1505 1368 1184 1063 937 844 761 689 633 570 507 449 402 355 321 292 260 241 216 196 178 168 161 155 146 140 135 129 122 117 109 102 96	Mit 104 101 97 98 85 79 76 68 56 50 43 40 33 30 28 27 22 21 18 16 12 9 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7	Percentage 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0335 0.0341	117 109 102	7 7 7	5 6 6 6 6 7 7	Pass Pass Pass

0.0377 0.0382 0.0387 0.0392 0.0398 0.0403 0.0408 0.0413 0.0418 0.0423 0.0429 0.0434	61 66 64 60 45 41 41 43 65 65 65 65 65 65 65 65 65 65	666555555554444432222222222111000000000000000000000	9 10 9 10 11 12 12 13 16 19 18 22 33 57 50 40 40 40 40 40 40 50 50 66 66 66 63 33 33 0 0 0 0 0 0 0 0 0 0	Pass Pass Pass Pass Pass Pass Pass Pass
--	--	---	--	---

Basin B-2C 1/25/2021 11:16:47 AM Page 13

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.048 acre-feet
On-line facility target flow: 0.0514 cfs.
Adjusted for 15 min: 0.0289 cfs.
Adjusted for 15 min: 0.0289 cfs.

---- WQ flow rate = 13gpm

Basin B-2C 1/25/2021 11:16:47 AM Page 14

Appendix Predeveloped Schematic

	7	Basin 0.47ac	2C			

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-2D

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-2D 1/25/2021 2:38:07 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 2D

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.163

Pervious Total 0.163

Impervious Land Use acre

Impervious Total 0

Basin Total 0.163

Element Flows To:

Surface Interflow Groundwater

Basin B-2D 1/25/2021 2:38:07 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Mod 0.039

Pervious Total 0.039

Impervious Land Use acre ROADS MOD 0.064 ROOF TOPS FLAT 0.052 SIDEWALKS MOD 0.008

Impervious Total 0.124

Basin Total 0.163

Element Flows To:

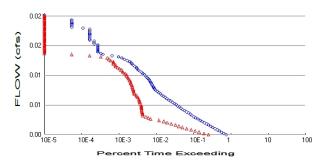
Surface Interflow Groundwater Tank 1 Tank 1

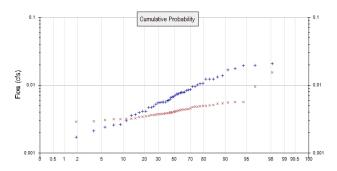
Basin B-2D 1/25/2021 2:38:07 PM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing

Facility Depth Tank 1 **Dimensions** Depth: 4 ft. Tank Type: Circular Diameter: 4 ft. Length: 113 ft. Infiltration On Infiltration rate: Infiltration safety factor: Total Volume Infiltrated (ac-ft.): 15.391 Total Volume Through Riser (ac-ft.): 5.825 Total Volume Through Facility (ac-ft.): 21.216 Percent Infiltrated: 72.54 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 orifice dimensions Discharge Structure Riser Height: 3.9 ft. Riser Diameter: 24 in. Orifice 1 Diameter: 0.375 in. Elevation:0 ft. Orifice 2 Diameter: 0.5 in. Elevation: 2.668 ft. 0.3125 in Elevation: 3.55875000000003 ft. Orifice 3 Diameter: Element Flows To: Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0444	0.002	0.000	0.000	0.002
0.0889	0.003	0.000	0.001	0.003
0.1333	0.003	0.000	0.001	0.003
0.1778	0.004	0.000	0.001	0.004
0.2222	0.004	0.000	0.001	0.004
0.2667	0.005	0.000	0.002	0.005
0.3111	0.005	0.001	0.002	0.005
0.3556	0.005	0.001	0.002	0.006
0.4000	0.006	0.001	0.002	0.006
0.4444	0.006	0.002	0.002	0.006
0.4889	0.006	0.002	0.002	0.006
0.5333	0.007	0.002	0.002	0.007
0.5778	0.007	0.002	0.002	0.007
0.6222	0.007	0.003	0.003	0.007
0.6667	0.007	0.003	0.003	0.007
0.7111	0.007	0.003	0.003	0.008
0.7556	0.008	0.004	0.003	0.008
0.8000	0.008	0.004	0.003	0.008
0.8444	0.008	0.005	0.003	0.008
0.8889	0.008	0.005	0.003	0.008
0.9333	0.008	0.005	0.003	0.008
0.9778	0.008	0.006	0.003	0.009
1.0222	0.009	0.006	0.003	0.009
1.0667	0.009	0.007	0.003	0.009
1.1111	0.009	0.007	0.004	0.009
1.1556	0.009	0.007	0.004	0.009

3.7778	0.004	0.031	0.015	0.010
3.8222	0.004	0.032	0.016	0.010
3.8667	0.003	0.032	0.016	0.010
3.9111	0.003	0.032	0.041	0.010
3.9556	0.002	0.032	0.294	0.010
4.0000	0.000	0.032	0.687	0.010
4.0444	0.000	0.000	1.179	0.010

- facility volume = 1394cf

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.163
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.039 Total Impervious Area: 0.124

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.00677

 5 year
 0.01114

 10 year
 0.014209

 25 year
 0.018189

 50 year
 0.021191

 100 year
 0.024204

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.004049

 5 year
 0.005239

 10 year
 0.006131

 25 year
 0.00738

 50 year
 0.008404

 100 year
 0.009512

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.007	0.004
1957	0.012	0.005
1958	0.004	0.003
1959	0.006	0.004
1960	0.010	0.005
1961	0.006	0.004
1962	0.002	0.003
1963	0.012	0.005
1964	0.007	0.004
1965	0.008	0.004

0.004 0.006 0.005 0.007 0.014 0.006 0.005 0.009 0.002 0.009 0.002 0.007 0.012 0.006 0.013 0.005 0.010 0.008 0.003 0.011 0.009 0.004 0.005 0.017 0.021 0.004 0.005 0.017 0.021 0.004 0.005 0.017 0.019 0.004 0.005 0.017 0.001 0.008 0.007 0.001 0.008 0.007	0.003 0.004 0.003 0.004 0.005 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.006 0.009 0.004 0.009 0.004 0.009 0.004 0.009 0.004 0.009 0.004 0.009 0.004 0.009 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.004 0.005 0.006 0.009 0.004 0.009 0.
0.001 0.008	0.003 0.006
	0.006 0.005 0.003 0.005 0.007 0.014 0.006 0.005 0.020 0.009 0.002 0.007 0.012 0.006 0.013 0.005 0.010 0.008 0.003 0.011 0.004 0.005 0.017 0.021 0.004 0.005 0.017 0.021 0.004 0.003 0.001 0.004 0.003 0.001 0.006 0.008 0.007 0.011 0.006 0.008 0.007 0.009 0.001 0.008 0.007 0.009 0.001 0.008 0.007 0.009 0.001 0.008 0.008

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0208	0.0155
2	0.0195	0.0095
3	0.0193	0.0056
4	0.0175	0.0056
5	0.0169	0.0056
6	0.0137	0.0054
7	0.0131	0.0053
8	0.0124	0.0051
9	0.0123	0.0050
10	0.0123	0.0050
11	0.0106	0.0050

0.0106 0.0100 0.0095 0.0095 0.0086 0.0084 0.0084 0.0079 0.0078 0.0077 0.0075 0.0074 0.0074 0.0070 0.0067 0.0066 0.0061 0.0060 0.0059 0.0057 0.0056 0.0055 0.0055 0.0055 0.0055 0.0052 0.0049 0.0047 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0037 0.0036 0.0030 0.0026	0.0049 0.0048 0.0047 0.0045 0.0044 0.0044 0.0043 0.0043 0.0042 0.0042 0.0041 0.0041 0.0041 0.0040 0.0039 0.0038
0.0036 0.0030	0.0032 0.0032
	0.0100 0.0095 0.0095 0.0086 0.0084 0.0079 0.0078 0.0077 0.0075 0.0074 0.0074 0.0067 0.0067 0.0066 0.0061 0.0060 0.0059 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0047 0.0041 0.0041 0.0041 0.0041 0.0040 0.0037 0.0036 0.0036 0.0036 0.0036 0.0036 0.0037

Basin B-2D 1/25/2021 2:38:31 PM Page 11

Duration Flows

The Facility PASSED

Flow(cfs) 0.0034 0.0036 0.0037 0.0039 0.0041 0.0043 0.0045 0.0046 0.0048 0.0050 0.0052 0.0054 0.0055 0.0057 0.0059 0.0061 0.0063 0.0064 0.0066 0.0068 0.0070 0.0072 0.0073 0.0075 0.0077 0.0079 0.0081 0.0082 0.0084 0.0088 0.0090 0.0091 0.0088 0.0090 0.0091 0.0093 0.0095 0.0097 0.0099 0.0100 0.0102 0.0104 0.0106 0.0108 0.0109 0.0111 0.0113 0.0115 0.0117 0.0118	Predev 13771 11837 10298 9032 7962 6940 6105 5334 4685 4131 3609 3172 2782 2416 2109 1875 1679 1504 1367 1184 1062 936 8444 761 688 632 570 506 449 402 355 321 292 260 216 196 178 168 161 155 146 140 135 130 122 117 109	Mit 4637 3490 2596 2011 1573 1204 928 750 601 467 363 293 218 130 17 80 79 78 77 75 74 73 72 69 67 664 63 59 56 54 447 445 444 43 42 41 40 38 38 36 35 33	Percentage 33 29 25 22 19 17 15 14 12 11 10 9 7 5 5 4 5 6 7 8 8 9 10 11 12 13 14 15 17 18 19 20 21 22 25 26 26 27 28 28 29 29 30	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0111	135	38	28	Pass
0.0113	130	38	29	Pass
0.0115	122	36	29	Pass

0.0129 68 0.0131 61 0.0133 57 0.0135 54 0.0136 50 0.0138 45 0.0140 41 0.0142 39 0.0144 36 0.0145 31 0.0147 26 0.0149 22 0.0151 18 0.0153 12 0.0154 7 0.0156 6 0.0157 18 0.0160 5 0.0161 5 0.0162 5 0.0163 5 0.0164 5 0.0165 5 0.0167 5 0.0168 5 0.0174 4 0.0175 3 0.0180 3 0.0181 3 0.0183 3 0.0184 3 0.0185 3 0.0186 1 0.0199 1 0.0190 3	23 21 19 17 15 13 13 11 10 9 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 34 33 33 33 33 33 33 35 38 40 32 14 00 00 00 00 00 00 00 00 00 00 00 00 00	Pass Pass Pass Pass Pass Pass Pass Pass
---	--	--	---

Basin B-2D 1/25/2021 2:38:31 PM Page 13

Water Quality

Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0174 acre-feet
On-line facility target flow: 0.019 cfs.
Adjusted for 15 min: 0.019 cfs.

Off-line facility target flow: 0.0107 cfs. Adjusted for 15 min: 0.0107 cfs.

---- WQ flow rate = 4.8gpm

Basin B-2D 1/25/2021 2:38:32 PM Page 14

Appendix Predeveloped Schematic

Basin 2D 0.16ac	

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-3

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-3 1/25/2021 8:18:33 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 3

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.908

Pervious Total 0.908

Impervious Land Use acre

Impervious Total 0

Basin Total 0.908

Element Flows To:

Surface Interflow Groundwater

Basin B-3 1/25/2021 8:18:33 PM Page 3

Mitigated Land Use

Basin 3

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Flat 0.402

Pervious Total 0.402

Impervious Land Use acre ROADS MOD 0.251 ROOF TOPS FLAT 0.207 SIDEWALKS MOD 0.048

Impervious Total 0.506

Basin Total 0.908

Element Flows To:

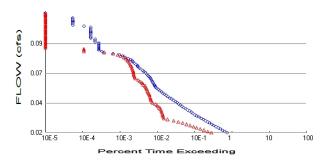
Surface Interflow Groundwater

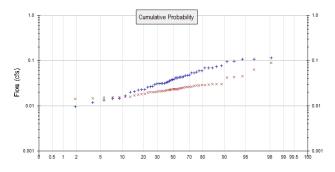
Trapezoidal Pond 1 Trapezoidal Pond 1

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond	1		
Bottom Length:	31.30 ft.	facility	depth including
Bottom Width:	31.30 ft.	1' of fr	eeboard
Depth:	51.50 lt.		
Volume at riser head:		ot /	facility and is a
Infiltration On	0.1407 acre-lee	51.	_ facility active
Infiltration rate:	1		volume require
Infiltration safety factor	or· 1		
Wetted surface area (
Total Volume Infiltrate		81.559	
Total Volume Through		23.353	
Total Volume Through		104.912	
Percent Infiltrated:	i i aciity (ac-it.).	77.74	
Total Precip Applied to	o Facility:	0	
Total Evap From Faci		0	
Side slope 1:	2 To 1	O	
Side slope 1:	2 To 1		
Side slope 3:	2 To 1		
Side slope 4:	2 To 1	riser height	t required
Discharge Structure	2101		•
Riser Height:	4 ft.		orifice dimension
Riser Diameter:	18 in.		\(\lambda \)
Orifice 1 Diameter:		tion:0 ft.	V _
Orifice 2 Diameter:		tion:2.598 ft.	
Orifice 3 Diameter:		tion:3.4545833333333	36 ft
Element Flows To:	U.7 III. Eleva	1011.0.4040000000000	50 It.
Outlet 1	Outlet 2		
Oddet 1	Outlet 2		


Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.022	0.000	0.000	0.000
0.0556	0.022	0.001	0.004	0.023
0.1111	0.023	0.002	0.006	0.023
0.1667	0.023	0.003	0.007	0.023
0.2222	0.023	0.005	0.009	0.024
0.2778	0.024	0.006	0.010	0.024
0.3333	0.024	0.007	0.011	0.024
0.3889	0.024	0.009	0.011	0.025
0.4444	0.025	0.010	0.012	0.025
0.5000	0.025	0.012	0.013	0.025
0.5556	0.025	0.013	0.014	0.026
0.6111	0.026	0.014	0.015	0.026
0.6667	0.026	0.016	0.015	0.026
0.7222	0.026	0.017	0.016	0.027
0.7778	0.027	0.019	0.016	0.027
0.8333	0.027	0.020	0.017	0.027
0.8889	0.027	0.022	0.018	0.028
0.9444	0.028	0.023	0.018	0.028
1.0000	0.028	0.025	0.019	0.028
1.0556	0.029	0.027	0.019	0.029
1.1111	0.029	0.028	0.020	0.029
1.1667	0.029	0.030	0.020	0.029
1.2222	0.030	0.032	0.021	0.030

1.2778 1.3333 1.3889 1.4444 1.5000 1.5556 1.6111 1.6667 1.7222 1.7778 1.8333 1.8889 1.9444 2.0000 2.0556 2.1111 2.1667 2.2222 2.2778 2.3333 2.3889 2.4444 2.5000 2.5556 2.6111 2.6667 2.7222 2.7778 2.8333 2.8889 2.9444 3.0000 3.0556 3.1111 3.1667 3.2222 3.2778 3.3333 3.3889 3.4444 3.5000 3.0556 3.1111 3.1667 3.2222 3.7778 3.8333 3.3889 3.4444 3.5000 3.5556 3.6111 3.6667 3.7222 3.7778 3.8333 3.8889 3.9444 3.0000	0.030 0.031 0.031 0.031 0.032 0.032 0.033 0.033 0.033 0.034 0.035 0.035 0.035 0.035 0.036 0.037 0.037 0.037 0.037 0.038 0.039 0.040 0.040 0.040 0.041 0.042 0.042 0.043 0.043 0.043 0.043 0.044 0.045 0.045 0.045 0.046 0.047 0.047 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.0049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.033 0.035 0.037 0.038 0.040 0.042 0.044 0.046 0.047 0.049 0.051 0.053 0.055 0.057 0.069 0.061 0.063 0.065 0.067 0.069 0.071 0.073 0.076 0.078 0.080 0.082 0.085 0.087 0.089 0.091 0.094 0.099 0.101 0.103 0.106 0.108 0.111 0.114 0.116 0.119 0.121 0.124 0.127 0.129 0.135 0.135 0.141	0.021 0.022 0.023 0.023 0.023 0.023 0.024 0.024 0.025 0.025 0.025 0.026 0.027 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029 0.030 0.030 0.034 0.039 0.043 0.045 0.047 0.049 0.051 0.053 0.055 0.056 0.058 0.055 0.062 0.062 0.063 0.071 0.062 0.063 0.065 0.065 0.065 0.066 0.074 0.074 0.076 0.078 0.079 0.081 0.083	0.030 0.031 0.031 0.032 0.032 0.033 0.033 0.033 0.034 0.035 0.035 0.035 0.036 0.037 0.037 0.037 0.037 0.037 0.039 0.039 0.040 0.041 0.042 0.043 0.043 0.043 0.044 0.044 0.045 0.045 0.045 0.046 0.047 0.048 0.049 0.049 0.050 0.051	
3.8889	0.050	0.138	0.083	0.050	
4.0000	0.051	0.143	0.086	0.051	facility values 0000 of
4.0556	0.051	0.146	0.296	0.052	- facility volume = 6229cf
4.1111	0.052	0.149	0.677	0.052	
4.1667	0.052	0.152	1.165	0.053	
4.2222	0.053	0.155	1.729	0.053	
4.2778	0.053	0.158	2.342	0.054	
4.3333	0.054	0.161	2.977	0.054	
4.3889 4.4444	0.054	0.164	3.606	0.055	
4.4444	0.055	0.167	4.201	0.055	

4.5000	0.055	0.170	4.737	0.056
4.5556	0.056	0.173	5.197	0.056
4.6111	0.056	0.176	5.569	0.057
4.6667	0.057	0.180	5.856	0.057
4.7222	0.057	0.183	6.078	0.058
4.7778	0.058	0.186	6.354	0.058
4.8333	0.058	0.189	6.575	0.059
4.8889	0.059	0.193	6.788	0.059
4.9444	0.059	0.196	6.995	0.060
5.0000	0.060	0.199	7.196	0.060
5.0556	0.060	0.203	7.391	0.061

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.908
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.402 Total Impervious Area: 0.506

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.037713

 5 year
 0.062054

 10 year
 0.07915

 25 year
 0.10132

 50 year
 0.118043

 100 year
 0.134829

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.022751

 5 year
 0.031345

 10 year
 0.037984

 25 year
 0.047529

 50 year
 0.055537

 100 year
 0.064363

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.038	0.022
1957	0.069	0.030
1958	0.023	0.016
1959	0.031	0.021
1960	0.053	0.027
1961	0.033	0.020
1962	0.012	0.016
1963	0.069	0.030
1964	0.041	0.022
1965	0.043	0.022

0.023 0.034 0.026 0.017 0.029 0.037 0.076 0.032 0.026 0.109 0.053 0.009 0.042 0.069 0.031 0.073 0.027 0.056 0.043 0.015 0.059 0.108 0.022 0.030 0.094 0.116 0.020 0.014 0.013 0.020 0.014 0.013 0.037 0.059 0.033 0.047 0.059 0.033 0.047 0.041 0.048 0.007 0.044 0.020 0.030	0.017 0.024 0.020 0.015 0.020 0.024 0.028 0.023 0.018 0.018 0.023 0.023 0.023 0.025 0.026 0.028 0.023 0.029 0.022 0.020 0.043 0.064 0.020 0.014 0.016 0.027 0.030 0.022 0.023 0.025 0.026 0.015 0.026 0.015 0.043 0.014
0.044	0.043
	0.034 0.026 0.017 0.029 0.037 0.076 0.032 0.026 0.109 0.053 0.009 0.042 0.069 0.031 0.073 0.027 0.056 0.043 0.015 0.059 0.108 0.022 0.030 0.094 0.116 0.020 0.014 0.013 0.020 0.014 0.013 0.037 0.059 0.033 0.047 0.041 0.048 0.007 0.044 0.020 0.039 0.031 0.043 0.047

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.1158 ⁻	0.0895
2	0.1086	0.0636
3	0.1076	0.0452
4	0.0977	0.0430
5	0.0940	0.0425
6	0.0763	0.0303
7	0.0731	0.0301
8	0.0688	0.0297
9	0.0686	0.0296
10	0.0685	0.0289
11	0.0591	0.0289

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	0.0589 0.0558 0.0531 0.0528 0.0477 0.0471 0.0470 0.0442 0.0435 0.0432 0.0430 0.0416 0.0413 0.0412 0.0392 0.0376 0.0372 0.0367 0.0342 0.0333 0.0329 0.0316 0.0314 0.0314 0.0307 0.0305 0.0292 0.0271 0.0261 0.0260 0.0229 0.0229 0.0229 0.0229 0.0229 0.0229 0.0205 0.0199 0.0166 0.0145 0.0144	0.0284 0.0279 0.0274 0.0265 0.0261 0.0259 0.0258 0.0253 0.0247 0.0242 0.0241 0.0233 0.0232 0.0232 0.0231 0.0230 0.0228 0.0223 0.0223 0.0217 0.0216 0.0215 0.0210 0.0210 0.0210 0.0200 0.0200 0.0200 0.0196 0.0196 0.0198 0.0176 0.0176 0.0176 0.0156 0.0156
48	0.0145	0.0156

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0189	13786	5204	37	Pass
0.0199	11840	4183	35	Pass
0.0209	10296	3315	32	Pass
0.0219	9030	2637	29	Pass
0.0229	7965	2091	26	Pass
0.0239	6945	1726	24	Pass
0.0249	6111	1411	23	Pass
0.0259	5339	1126	21	Pass
0.0269	4685	880	18	Pass
0.0279	4131	678	16	Pass
0.0289	3609	505	13	Pass
0.0299	3176	349	10	Pass
0.0309	2788	278	9	Pass
0.0319	2418	270	11	Pass
0.0329	2111	264	12	Pass
0.0339	1875	258	13	Pass
0.0349	1679	253	15	Pass
0.0359	1504	245	16	Pass
0.0369	1367	238	17	Pass
0.0379	1184	233	19	Pass
0.0389	1062	222	20	Pass
0.0399	936	208	22	Pass
0.0409	844	191	22	Pass
0.0419	762	180	23	Pass
0.0429	688	163	23	Pass
0.0439	632	140	22	Pass
0.0449	570	132	23	Pass
0.0459	507	126	24	Pass
0.0469	449	123	27	Pass
0.0479	402	121	30	Pass
0.0489	355	117	32	Pass
0.0499	321	115	35	Pass
0.0509	292	112	38	Pass
0.0519	260	107	41	Pass
0.0529	240	104	43	Pass
0.0539	216	100	46	Pass
0.0549	196	97	49	Pass
0.0559	178	94	52	Pass
0.0569	168	91	54	Pass
0.0579	161	87	54	Pass
0.0589	154	79	51	Pass
0.0599	146	74	50	Pass
0.0609	140	69	49	Pass
0.0619	135	63	46	Pass
0.0629	129	57	44	Pass
0.0639	122	48	39	Pass
0.0649	117	46	39	Pass
0.0659	109	45	41	Pass
0.0669	102	43	42	Pass
0.0679	96	43	44	Pass
0.0690	88	42	47	Pass
0.0700	81	42	51	Pass
0.0710	76	41	53	Pass

0.0720 68 40 0.0730 61 39 0.0740 56 38 0.0750 54 36 0.0750 54 36 0.0760 50 35 0.0770 45 34 0.0780 41 32 0.0790 39 30 0.0800 36 29 0.0810 31 26 0.0820 26 23 0.0830 22 19 0.0840 18 16 0.0850 12 12 0.0870 6 2 0.0880 5 2 0.0890 5 2 0.0990 5 0 0.0930 5 0 0.0940 5 0 0.0950 4 0 0.0990 3 0 0.1000 3 0 0.1020 3 0	58 63 67 66 70 75 78 76 83 88 88 100 33 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pass Pass Pass Pass Pass Pass Pass Pass
--	---	---

Basin B-3 1/25/2021 8:18:58 PM Page 13

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0797 acre-feet
On-line facility target flow: 0.0785 cfs.
Adjusted for 15 min: 0.0785 cfs.

Off-line facility target flow: 0.044 cfs.

Adjusted for 15 min: 0.044 cfs.

——— WQ flow rate = 19.8gpm

Basin B-3 1/25/2021 8:18:58 PM Page 14

Appendix Predeveloped Schematic

	晁	Basin 0.91ac	3			

Mitigated Schematic

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Basin B-4

Site Name: Jackson Villas 4

Site Address:

City: Chehalis
Report Date: 1/25/2021
Gage: Olympia
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 0.800

Version Date: 2019/09/13

Version: 4.2.17

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Basin B-4 1/25/2021 7:34:39 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 4

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Mod 0.918

Pervious Total 0.918

Impervious Land Use acre ROOF TOPS FLAT 0.046

Impervious Total 0.046

Basin Total 0.964

Element Flows To:

Surface Interflow Groundwater

Basin B-4 1/25/2021 7:34:39 PM Page 3

Mitigated Land Use

Basin 4

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Flat 0.329

Pervious Total 0.329

Impervious Land Use acre ROADS MOD 0.378 ROOF TOPS FLAT 0.207 SIDEWALKS MOD 0.05

Impervious Total 0.635

Basin Total 0.964

Element Flows To:

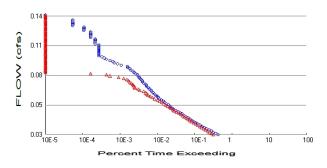
Surface Interflow Groundwater

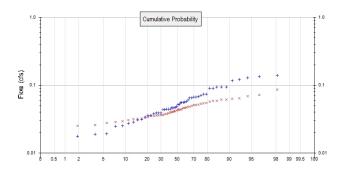
Trapezoidal Pond 1 Trapezoidal Pond 1

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1			facility depth including
Bottom Length:	44.00 ft.		1' of freeboard
Bottom Width:	44.00 ft.		
Depth:	3 ft.		activo storago volumo
Volume at riser head:	0.1251 acre-feet.	.]←──	_ active storage volume required
Infiltration On			required
Infiltration rate:	1		
Infiltration safety factor:	1		
Wetted surface area On			
Total Volume Infiltrated (a	ıc-ft.):	91.447	
Total Volume Through Ris	ser (ac-ft.):	27.119	
Total Volume Through Fa		118.565	
Percent Infiltrated:	, ,	77.13	
Total Precip Applied to Fa	acility:	0	
Total Evap From Facility:	,	0	
Side slope 1:	4 To 1		
Side slope 2:	4 To 1		
Side slope 3:	4 To 1	rio o r b	sialst vaarrivad
Side slope 4:	4 To 1	nser ne	eight required
Discharge Structure			
Riser Height:	2 ft.		orifice dimensions
Riser Diameter:	18 in.		
Orifice 1 Diameter:	1.5 in. Elevation	on:0 ft.	
Orifice 2 Diameter:	1.3125 in Elevation		
Orifice 3 Diameter:	0.8125 in Elevation		
Element Flows To:			
	tlet 2		


Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.044	0.000	0.000	0.000
0.0333	0.045	0.001	0.011	0.045
0.0667	0.045	0.003	0.015	0.045
0.1000	0.046	0.004	0.019	0.046
0.1333	0.046	0.006	0.022	0.047
0.1667	0.047	0.007	0.024	0.047
0.2000	0.047	0.009	0.027	0.048
0.2333	0.048	0.010	0.029	0.048
0.2667	0.048	0.012	0.031	0.049
0.3000	0.049	0.014	0.033	0.049
0.3333	0.050	0.015	0.035	0.050
0.3667	0.050	0.017	0.037	0.051
0.4000	0.051	0.019	0.038	0.051
0.4333	0.051	0.020	0.040	0.052
0.4667	0.052	0.022	0.041	0.052
0.5000	0.052	0.024	0.043	0.053
0.5333	0.053	0.026	0.044	0.053
0.5667	0.054	0.027	0.046	0.054
0.6000	0.054	0.029	0.047	0.055
0.6333	0.055	0.031	0.048	0.055
0.6667	0.055	0.033	0.049	0.056
0.7000	0.056	0.035	0.051	0.056
0.7333	0.057	0.037	0.052	0.057

0.7667 0.8000 0.8333 0.8667 0.9000 0.9333 0.9667 1.0000 1.0333 1.0667 1.1000 1.2333 1.2667 1.3000 1.2333 1.2667 1.3000 1.3333 1.3667 1.4000 1.4333 1.4667 1.5000 1.5333 1.5667 1.6000 1.6333 1.6667 1.7000 1.7333 1.7667 1.8000 1.8333 1.8667 1.9000 1.9333 1.9667 2.0000	0.057 0.058 0.058 0.059 0.060 0.060 0.061 0.062 0.062 0.063 0.064 0.065 0.066 0.066 0.067 0.068 0.067 0.068 0.069 0.070 0.071 0.072 0.072 0.072 0.072 0.073 0.074 0.075 0.076 0.076 0.076 0.077 0.078 0.079 0.080 0.081 0.081 0.082	0.039 0.041 0.042 0.044 0.046 0.048 0.051 0.053 0.055 0.057 0.059 0.061 0.063 0.065 0.068 0.070 0.072 0.074 0.077 0.079 0.081 0.084 0.086 0.088 0.091 0.098 0.101 0.103 0.106 0.109 0.111 0.114 0.117 0.119 0.122 0.125	0.053 0.054 0.055 0.056 0.057 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.065 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.073 0.073 0.074 0.075 0.076 0.075 0.076 0.077 0.078 0.078 0.078 0.079 0.080 0.081 0.081 0.082 0.083 0.089 0.083 0.089 0.098	0.058 0.059 0.060 0.060 0.061 0.062 0.063 0.063 0.064 0.065 0.065 0.066 0.067 0.067 0.068 0.069 0.070 0.071 0.071 0.071 0.072 0.073 0.074 0.075 0.076 0.076 0.076 0.076 0.076 0.077 0.078 0.078 0.078 0.079 0.080 0.081 0.082 0.083	nond storage values
2.0000 2.0333 2.0667 2.1000 2.1333 2.1667 2.2000 2.2333 2.2667 2.3000 2.3333 2.3667 2.4000 2.4333 2.4667 2.5000 2.5333 2.5667 2.6000 2.6333 2.6667	0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.090 0.090 0.091 0.092 0.093 0.094 0.094 0.095 0.096 0.097 0.098	0.127 0.130 0.133 0.136 0.139 0.142 0.145 0.148 0.150 0.153 0.156 0.160 0.163 0.166 0.169 0.172 0.175 0.178 0.178 0.182 0.185	0.208 0.388 0.620 0.892 1.198 1.531 1.885 2.255 2.635 3.018 3.400 3.772 4.131 4.471 4.786 5.073 5.329 5.554 5.747 5.911	0.084 0.084 0.085 0.086 0.087 0.087 0.088 0.089 0.090 0.091 0.092 0.093 0.094 0.094 0.095 0.096 0.097 0.098	pond storage volume = 5445cf

2.7000	0.098	0.188	6.051	0.099
2.7333	0.099	0.191	6.174	0.100
2.7667	0.100	0.195	6.367	0.101
2.8000	0.101	0.198	6.502	0.102
2.8333	0.102	0.201	6.634	0.102
2.8667	0.102	0.205	6.764	0.103
2.9000	0.103	0.208	6.891	0.104
2.9333	0.104	0.212	7.017	0.105
2.9667	0.105	0.215	7.139	0.106
3.0000	0.106	0.219	7.260	0.107
3.0333	0.107	0.222	7.379	0.107

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.918 Total Impervious Area: 0.046

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.329 Total Impervious Area: 0.635

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.050842

 5 year
 0.078374

 10 year
 0.097793

 25 year
 0.123378

 50 year
 0.143078

 100 year
 0.163255

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.042417

 5 year
 0.054166

 10 year
 0.061719

 25 year
 0.071084

 50 year
 0.077965

 100 year
 0.084788

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1956	0.048	0.041
1957	0.089	0.064
1958	0.036	0.031
1959	0.046	0.040
1960	0.064	0.051
1961	0.046	0.032
1962	0.017	0.028
1963	0.094	0.063
1964	0.057	0.040
1965	0.056	0.046

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001	0.034 0.044 0.036 0.025 0.039 0.047 0.093 0.039 0.039 0.027 0.066 0.027 0.060 0.089 0.044 0.074 0.056 0.025 0.074 0.133 0.031 0.046 0.116 0.141 0.031 0.046 0.116 0.141 0.031 0.019 0.045 0.071 0.044 0.075 0.071 0.044 0.075 0.019	0.028 0.046 0.038 0.026 0.035 0.044 0.053 0.039 0.036 0.047 0.044 0.039 0.048 0.049 0.057 0.033 0.034 0.059 0.057 0.033 0.034 0.059 0.057 0.036 0.037 0.036 0.037 0.036 0.031
1998	0.067	0.049
1999	0.055	0.048
2000	0.065	0.051

Ranked Annual Peaks

iai i cans		
Peaks for Prede	eveloped and Mitigated.	POC #1
Predeveloped	Mitigated	
0.1405	0.0867	
0.1329	0.0712	
0.1286	0.0688	
0.1210	0.0639	
0.1156	0.0628	
0.0938	0.0614	
0.0934	0.0610	
0.0933	0.0589	
0.0894	0.0587	
0.0894	0.0573	
0.0740	0.0549	
	Peaks for Prede Predeveloped 0.1405 0.1329 0.1286 0.1210 0.1156 0.0938 0.0934 0.0933 0.0894 0.0894	Peaks for Predeveloped and Mitigated. Predeveloped Mitigated 0.1405

23 0.0553 0.04 24 0.0550 0.04 25 0.0523 0.04 26 0.0515 0.04 27 0.0484 0.04 28 0.0466 0.04 29 0.0460 0.04 30 0.0459 0.04 31 0.0459 0.04 32 0.0445 0.03 33 0.0444 0.03 34 0.0444 0.03 35 0.0438 0.03 36 0.0436 0.03 37 0.0392 0.03 38 0.0391 0.03 39 0.0390 0.03 40 0.0378 0.03 41 0.0356 0.03 42 0.0356 0.03 43 0.0339 0.03 44 0.0315 0.03 45 0.0308 0.03 46 0.0286 0.03 47 0.0273 0.03
44 0.0315 0.03 45 0.0308 0.03 46 0.0286 0.03

Duration Flows

The Facility PASSED

Flow(cfs) 0.0254 0.0254 0.0266 0.0278 0.0290 0.0302 0.0314 0.0326 0.0337 0.0349 0.0361 0.0373 0.0385 0.0397 0.0409 0.0421 0.0432 0.0444 0.0456 0.0468 0.0480 0.0492 0.0504 0.0516 0.0528 0.0539 0.0551 0.0563 0.0575 0.0587 0.0587 0.0587 0.0587 0.0599 0.0611 0.0623 0.0635 0.0646 0.0658 0.0670 0.0682 0.0694 0.0706 0.0718 0.0730 0.0741 0.0753 0.0765 0.0777 0.0789 0.0801 0.0813 0.0825	Predev 7871 6824 5897 5172 4505 3866 3329 2912 2567 2230 1977 1737 1549 1374 1223 1078 962 865 771 686 588 526 464 428 393 362 323 290 266 240 214 194 181 169 154 181 169 154 181 113 109 99 94 90 81 75 72 68 64 60	Mit 5875 5243 4661 4148 3656 3237 2853 2531 2247 1985 1740 1537 1372 1225 1111 989 892 801 707 611 532 487 430 391 345 310 276 244 211 185 154 119 104 96 90 79 63 57 47 45 42 40 37 45 42 40 37 47 487 496 90 79 63 57 47 45 42 40 40 40 40 40 40 40 40 40 40	Percentage 74 76 79 80 81 83 85 86 87 89 88 88 89 90 91 92 91 89 90 92 91 87 85 84 79 77 71 69 65 61 62 62 60 50 43 44 44 45 44 45 43 41 35 28	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0789	72	31	43	Pass
0.0801	68	28	41	Pass
0.0813	64	23	35	Pass

0.0884	41	0	0	Pass
0.0896	36	0	0	Pass
0.0908	34	Ö	Ö	Pass
0.0920	30	Ö	Ő	Pass
0.0932	29	Ö	Ő	Pass
0.0932	20	Ö	Ö	Pass
0.0955	16	Ö	Ö	Pass
0.0967	13	Ö	Ö	Pass
0.0979	12	Ö	Ö	Pass
0.0991	10	Ö	Ö	Pass
0.1003	8	Ö	Ő	Pass
0.1015	7	Ŏ	Ŏ	Pass
0.1017	6	Ŏ	Ŏ	Pass
0.1039	5	ŏ	ŏ	Pass
0.1050	5	ŏ	ŏ	Pass
0.1062	5	Ŏ	ŏ	Pass
0.1074	5	Ŏ	ŏ	Pass
0.1086	5	Ŏ	ŏ	Pass
0.1098	5	Ö	Ö	Pass
0.1110	5	Ö	Ö	Pass
0.1122	5	Ö	Ö	Pass
0.1134	5	Ö	Ö	Pass
0.1146	5	0	0	Pass
0.1157	4	0	0	Pass
0.1169	4	0	0	Pass
0.1181	4	0	0	Pass
0.1193	4	0	0	Pass
0.1205	4	0	0	Pass
0.1217	3	0	0	Pass
0.1229	3	0	0	Pass
0.1241	3	0	0	Pass
0.1253	3	0	0	Pass
0.1264	3	0	0	Pass
0.1276	3	0	0	Pass
0.1288	3 3 3 3 3 2 2 2	0	0	Pass
0.1300	2	0	0	Pass
0.1312		0	0	Pass
0.1324	2 1	0	0	Pass
0.1336	1	0	0	Pass
0.1348	1	0	0	Pass
0.1359	1	0	0	Pass
0.1371	1	0	0	Pass
0.1383	1	0	0	Pass
0.1395	1	0	0	Pass
0.1407	0	0	0	Pass
0.1419	0 0	0 0	0 0	Pass
0.1431	U	U	U	Pass

Basin B-4 1/25/2021 7:35:05 PM Page 13

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.0939 acre-feet
On-line facility target flow: 0.0986 cfs.
Adjusted for 15 min: 0.0986 cfs.
Off-line facility target flow: 0.0554 cfs.
Adjusted for 15 min: 0.0554 cfs.

— WQ flow rate = 24.9gpm

Appendix Predeveloped Schematic

	遍	Basin 0.96ac	4			

Mitigated Schematic

SECTION 6 – CONSTRUCTION SWPPP

This project is required to prepare a construction Storm Water Pollution Prevention Plan in accordance with Minimum Requirement #2 and must be prepared in accordance with Volume II chapter 3 of the SWMMWW.

This drainage and erosion control report is intended to supplement the construction SWPPP by utilizing other sections in this report to cover required narrative elements. Also, the construction and erosion control plans supplied for the project are to act as the required drawing component of the construction SWPPP.

Intended BMPs which should be used during construction include but are not limited to:

- BMP C101: Preserving Natural Vegetation
- BMP C102: Buffer Zones
- BMP C103: High Visibility Fence
- BMP C105: Stabilized Construction Entrance / Exit
- BMP C120: Temporary and Permanent Seeding
- BMP C123: Plastic Covering
- BMP C125: Topsoiling / Composting
- BMP C140: Dust Control
- BMP C153: Material Delivery, Storage and Containment
- BMP C160: Certified Erosion and Sediment Control Lead
- BMP C162: Scheduling
- BMP C233: Silt Fence

CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

FOR

Jackson Villa Expansion 4

0 Jackson Highway Chehalis, WA 98532

Prepared by:

1101 Kresky Ave. Centralia, WA 98531 (360) 807-4420

General Requirements

Clearing and grading activities for this project shall be permitted only to the approved site development plan. These clearing and grading areas were established to preserve sensitive areas, buffers, native growth protection easements, and tree retention areas. These areas are delineated on the site plans and shall be marked on the development site.

The SWPPP shall be implemented beginning with initial land disturbance and until final stabilization. Sediment and Erosion control BMPs shall be consistent with the BMPs contained in chapters 3 and 4 of Volume II of the SWMMWW.

Seasonal Work Limitations - From October 15 through April 1, clearing, grading, and other soil disturbing activities shall only be permitted if shown to the satisfaction of the local permitting authority that silt-laden runoff will be prevented from leaving the site through a combination of the following:

- 1. Site conditions including existing vegetative coverage, slope, soil type and proximity to receiving waters.
- 2. Limitations on activities and the extent of disturbed areas.
- 3. Proposed erosion and sediment control measures.

Project Requirements - Construction SWPPP Elements

In most cases, all the following elements shall apply and be implemented throughout construction. Self-contained sites (discharges only to groundwater) must comply with all elements except for Element 3: Control Flow Rates.

Element 1: Preserve Vegetation/Mark Clearing Limits

- Before beginning land disturbing activities, including clearing and grading, clearly mark
 all clearing limits, sensitive areas and their buffers, and trees that are to be preserved
 within the construction area.
- Retain the duff layer, native topsoil, and natural vegetation in an undisturbed state to the maximum degree practicable.

Element 2: Establish Construction Access

- Limit construction vehicle access and exit to one route, if possible.
- Stabilize access points with a pad of quarry spalls, crushed rock, or other equivalent BMPs, to minimize tracking of sediment onto public roads.
- Locate wheel wash or tire baths on site, if the stabilized construction entrance is not effective in preventing tracking sediment onto roads.
- If sediment is tracked off site, clean the affected roadway thoroughly at the end of each day, or more frequently as necessary (for example, during wet weather). Remove sediment from roads by shoveling, sweeping, or pick up and transport the sediment to a controlled sediment disposal area.
- Conduct street washing only after sediment is removed in accordance with the above bullet.

• Control street wash wastewater by pumping back on-site, or otherwise prevent it from discharging into systems tributary to waters of the State.

Element 3: Control Flow Rates

- Protect properties and waterways downstream of development sites from erosion and the associated discharge of turbid waters due to increases in the velocity and peak volumetric flow rate of stormwater runoff from the project site.
- Where necessary to comply with the bullet above, construct stormwater retention or detention facilities as one of the first steps in grading. Assure that detention facilities function properly before constructing site improvements (e.g. impervious surfaces).
- If permanent infiltration ponds are used for flow control during construction, protect these facilities from siltation during the construction phase.

Element 4: Install Sediment Controls

- Design, install, and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants.
- Construct sediment control BMPs (sediment ponds, traps, filters, etc.) as one of the first steps in grading. These BMPs shall be functional before other land disturbing activities take place.
- Minimize sediment discharges from the site. The design, installation and maintenance of erosion and sediment controls must address factors such as the amount, frequency, intensity and duration of precipitation, the nature of resulting stormwater runoff, and soil characteristics, including the range of soil particle sizes expected to be present on the site.
- Direct stormwater runoff from disturbed areas through a sediment pond or other appropriate sediment removal BMP, before the runoff leaves a construction site or before discharge to an infiltration facility. Runoff from fully stabilized areas may be discharged without a sediment removal BMP but must meet the flow control performance standard in Element #3, bullet #1.
- Locate BMPs intended to trap sediment on-site in a manner to avoid interference with the movement of juvenile salmonids attempting to enter off-channel areas or drainages.
- Where feasible, design outlet structures that withdraw impounded stormwater from the surface to avoid discharging sediment that is still suspended lower in the water column.

Element 5: Stabilize Soils

- Stabilize exposed and unworked soils by application of effective BMPs that prevent erosion. Applicable BMPs include but are not limited to: temporary and permanent seeding, sodding, mulching, plastic covering, erosion control fabrics and matting, soil application of polyacrylamide (PAM), the early application of gravel base early on areas to be paved, and dust control.
- Control stormwater volume and velocity within the site to minimize soil erosion.
- Control stormwater discharges, including both peak flow rates and total stormwater volume, to minimize erosion at outlets and to minimize downstream channel and stream bank erosion.
- Soils must not remain exposed and unworked for more than the time periods set forth below to prevent erosion:
 - o During the dry season (April 2 October 14): 7 days

- o During the wet season (October 15 April 1): 2 days
- o Note that projects performing work under a NPDES Construction Stormwater General Permit issued by Ecology will have more restrictive time periods.
- Stabilize soils at the end of the shift before a holiday or weekend if needed based on the weather forecast.
- Stabilize soil stockpiles from erosion, protected with sediment trapping measures, and where possible, be located away from storm drain inlets, waterways and drainage channels.
- Minimize the amount of soil exposed during construction activity.
- Minimize the disturbance of steep slopes.
- Minimize soil compaction and, unless infeasible, preserve topsoil.

Element 6: Protect Slopes

- Design and construct cut-and-fill slopes in a manner to minimize erosion. Applicable practices include, but are not limited to, reducing continuous length of slope with terracing and diversions, reducing slope steepness, and roughening slope surfaces (for example, track walking).
- Divert off-site stormwater (run-on) or ground water away from slopes and disturbed areas with interceptor dikes, pipes and/or swales. Off-site stormwater should be managed separately from stormwater generated on the site.
- At the top of slopes, collect drainage in pipe slope drains or protected channels to prevent erosion.
- Place excavated material on the uphill side of trenches, consistent with safety and space considerations.
- Place check dams at regular intervals within constructed channels that are cut down a slope.

Element 7: Protect Drain Inlets

- Protect all storm drain inlets made operable during construction so that stormwater runoff shall not enter the conveyance system without first being filtered or treated to remove sediment.
- Clean or remove and replace inlet protection devices when sediment has filled one-third of the available storage (unless a different standard is specified by the product manufacturer).

Element 8: Stabilize Channels and Outlets

- Design, construct, and stabilize all on-site conveyance channels.
- Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream reaches at the outlets of all conveyance systems.

Element 9: Control Pollutants

• Design, install, implement and maintain effective pollution prevention measures to minimize the discharge of pollutants.

- Handle and dispose of all pollutants, including waste materials and demolition debris that occur on-site in a manner that does not cause contamination of stormwater.
- Provide cover, containment, and protection from vandalism for all chemicals, liquid products, petroleum products, and other materials that have the potential to pose a threat to human health or the environment. On-site fueling tanks must include secondary containment. Secondary containment means placing tanks or containers within an impervious structure capable of containing 110% of the volume contained in the largest take within the containment structure. Double-walled tanks do not require additional secondary containment.
- Conduct maintenance, fueling, and repair of heavy equipment and vehicles using spill prevention and control measures. Clean contaminated surfaces immediately following any spill incident.
- Discharge wheel wash or tire bath wastewater to a separate on-site treatment system that prevents discharge to surface water, such as closed-loop recirculation or upland application, or to the sanitary sewer, with local sewer district approval.
- Apply fertilizers and pesticides in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Follow manufacturers' label requirements for application rates and procedures.
- Use BMPs to prevent contamination of stormwater runoff by pH modifying sources. The sources for this contamination include, but are not limited to: bulk cement, cement kiln dust, fly ash, new concrete washing and curing waters, waste streams generated from concrete grinding and sawing, exposed aggregate processes, dewatering concrete vaults, concrete pumping and mixer washout waters.
- Adjust the pH of stormwater if necessary to prevent violations of water quality standards.
- Assure that washout of concrete trucks is performed off-site or in designated concrete
 washout areas only. Do not wash out concrete trucks onto the ground, or into storm
 drains, open ditches, streets, or streams. Do not dump excess concrete on-site, except in
 designated concrete washout areas. Concrete spillage or concrete discharge to surface
 waters of the State is prohibited.
- Obtain written approval from Ecology before using chemical treatment other than CO2 or dry ice to adjust pH.

Element 10: Control De-Watering

- Discharge foundation, vault, and trench de-watering water, which has similar characteristics to stormwater runoff at the site, into a controlled conveyance system before discharge to a sediment trap or sediment pond.
- Discharge clean, non-turbid de-watering water, such as well-point ground water, to systems tributary to, or directly into surface waters of the State, as specified in Element #8, provided the de-watering flow does not cause erosion or flooding of receiving waters. Do not route clean dewatering water through stormwater sediment ponds. Note that "surface waters of the State" may exist on a construction site as well as off site; for example, a creek running through a site.
- Handle highly turbid or otherwise contaminated dewatering water separately from stormwater.
- Other treatment or disposal options may include:
 - 1. Infiltration.

- 2. Transport off-site in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute state waters.
- 3. Ecology-approved on-site chemical treatment or other suitable treatment technologies.
- 4. Sanitary or combined sewer discharge with local sewer district approval, if there is no other option.
- 5. Use of a sedimentation bag that discharges to a ditch or swale for small volumes of localized dewatering.

Element 11: Maintain BMPs

- Maintain and repair all temporary and permanent erosion and sediment control BMPs as needed to assure continued performance of their intended function in accordance with BMP specifications.
- Remove all temporary erosion and sediment control BMPs within 30 days after achieving final site stabilization or after the temporary BMPs are no longer needed.

Element 12: Manage the Project

- Phase development projects to the maximum degree practicable and consider seasonal work limitations.
- Inspection and monitoring Inspect, maintain and repair all BMPs as needed to assure continued performance of their intended function. Projects regulated under the Construction Stormwater General Permit must conduct site inspections and monitoring in accordance with Special Condition S4 of the Construction Stormwater General Permit.
- Maintaining an updated construction SWPPP Maintain, update, and implement the SWPPP
- Projects that disturb one or more acres must have site inspections conducted by a Certified Erosion and Sediment Control Lead (CESCL). Project sites disturbing less than one acre may have a CESCL or a person without CESCL certification conduct inspections. By the initiation of construction, the SWPPP must identify the CESCL or inspector, who must be present onsite or on-call at all times.
- The CESCL or inspector (project sites less than one acre) must have the skills to assess the:
 - Site conditions and construction activities that could impact the quality of stormwater.
 - Effectiveness of erosion and sediment control measures used to control the quality of stormwater discharges.
- The CESCL or inspector must examine stormwater visually for the presence of suspended sediment, turbidity, discoloration, and oil sheen. They must evaluate the effectiveness of BMPs and determine if it is necessary to install, maintain, or repair BMPs to improve the quality of stormwater discharges.
- Based on the results of the inspection, construction site operators must correct the problems identified by:
 - o Reviewing the SWPPP for compliance with the 13 construction SWPPP elements and making appropriate revisions within seven (7) calendar days of the inspection.
- Immediately beginning the process of fully implementing and maintaining appropriate source control and/or treatment BMPs as soon as possible, addressing the problems not

- later than within 10 days of the inspection. If installation of necessary treatment BMPs is not feasible within 10 days, the construction site operator may request an extension within the initial 10day response period.
- Documenting BMP implementation and maintenance in the site log book (sites larger than 1 acre).
- The CESCL or inspector must inspect all areas disturbed by construction activities, all BMPs, and all stormwater discharge points at least once every calendar week and within 24 hours of any discharge from the site. (For purposes of this condition, individual discharge events that last more than one day do not require daily inspections. For example, if a stormwater pond discharges continuously over the course of a week, only one inspection is required that week.) The CESCL or inspector may reduce the inspection frequency for temporary stabilized, inactive sites to once every calendar month.

Element 13: Protect Low Impact Development BMPs

- Protect all Bioretention and Rain Garden BMPs from sedimentation through installation and maintenance of erosion and sediment control BMPs on portions of the site that drain into the Bioretention and/or Rain Garden BMPs. Restore the BMPs to their fully functioning condition if they accumulate sediment during construction. Restoring the BMP must include removal of sediment and any sediment-laden Bioretention/rain garden soils, and replacing the removed soils with soils meeting the design specification.
- Prevent compacting Bioretention and rain garden BMPs by excluding construction equipment and foot traffic. Protect completed lawn and landscaped areas from compaction due to construction equipment.
- Control erosion and avoid introducing sediment from surrounding land uses onto permeable pavements. Do not allow muddy construction equipment on the base material or pavement. Do not allow sediment-laden runoff onto permeable pavements or base materials.
- Pavement fouled with sediments or no longer passing an initial infiltration test must be cleaned using procedures in accordance with this manual or the manufacturer's procedures.
- Keep all heavy equipment off existing soils under LID facilities that have been excavated to final grade to retain the infiltration rate of the soils.

SECTION 7 – SPECIAL REPORTS AND STUDIES

A soils report from the NRCS USDA web soil survey website is included on the next pages. The information from this soil report was used to approximate subsurface site conditions and runoff potential. Soil characteristics were also directly evaluated through digging test pits and performing textural evaluation. Soils described in the USDA report are different than what was found in the field. Soils discussion can be found in both the Wetland and geotechnical reports included.

A wetland critical areas report is included as prepared by Loowit Consulting Group, Inc. This report scores and delineates the wetland area shown in the phase 2 area. As of the date this report was written a wetland bank use plan is still in progress. Once prepared it will be provided.

A geotechnical report is included as prepared by All American Geotechnical, Inc. The report concluded the site posed minimal to nonexistent landslide hazards.

A cultural resource study (archaeology) is being prepared by Drayton Archaeology Inc. This study is to be submitted in conjunction with the wetland bank use plan to the Army Corps of Engineers. This study report will be provided once complete.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
89	Galvin silt loam, 0 to 8 percent slopes	4.1	72.2%
118	Lacamas silt loam, 0 to 3 percent slopes	0.1	1.5%
194	Scamman silty clay loam, 5 to 15 percent slopes	1.5	26.3%
Totals for Area of Interest		5.6	100.0%

Critical Areas Report for XXXX Jackson Hwy Chehalis, Washington

Prepared for: Lakewood Investors, LLC 12030 Sunrise Valley Dr, Suite 450 Reston, VA 20191

Project # 187.04

Prepared by: Loowit Consulting Group, LLC 312 Gray Road Castle Rock, WA 98611 360.431.5118

Table of Contents

SIGNATURE PAGE	2
INTRODUCTION	3
Purpose and Need	3
Site Description	3
METHODS	4
Desktop Review	4
State Regulations	5
Federal Regulations	5
Local Regulations	5
Field Investigations	5
Vegetation	6
Soils	7
Hydrology	
Mapping	7
RESULTS and DISCUSSION	8
Wetlands	8
Wetland Buffers	8
CONCLUSIONS	8
LIMITATIONS	9
REFERENCES	9
FIGURES	11
APPENDIX A - DATA FORMS	12
APPENDIX B - WETLAND RATING SUMMARY	13
APPENDIX C –CLIMATOLOGICAL DATA	14

SIGNATURE PAGE

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned:

Mint)). Hall

Timothy J. Haderly, Principal Scientist/Owner Loowit Consulting Group, LLC

INTRODUCTION

Purpose and Need

Loowit Consulting Group, LLC (LCG) was retained by Lakewood Investor, LLC (Applicant) to complete a critical areas investigation and report at XXXX Jackson Hwy (Subject Site) in Chehalis, Washington (Figure 1 & 2). The Applicant has proposed the construction of a phased multi-family residential facility including site access, street improvements, public supplied sewer/water, on-site parking, lighting and landscaping (Figure 3). Potential critical areas within the subject site prompted the City of Chehalis to request an evaluation of critical areas according to Chehalis Municipal Code (CMC) Title 17 – Division III.

Photograph 1: Subject site from Kennicott Road looking southeast.

Site Description

The subject site consists of a single parcel totaling approximately 4.32 acres of unimproved property. Site specifics include:

Site Address: XXXX Jackson Hwy

Chehalis, WA

<u>Current Owner</u>: Lakewood Investors, LLC

Tax Parcel Number: 010799001000

<u>Legal Description</u>: Section 3, Township 13 North, Range 2 West, W.M.

<u>Property Size</u>: Approximately 4.32 acres

<u>Jurisdiction</u>: City of Chehalis

The subject site is located southeast of Kennicott Road, northeast of Jackson Hwy, and southwest of Hosanna Ln in the southwestern portion of the City of Chehalis, Washington (Figure 1). The subject site consists of a sloped, unimproved property vegetated with a mix of pasture grass, teasel, thistles, and a few scattered willow clumps in the wetland area. There is no established access into the site for vehicles but a small parking spot in the northern corner of the site provides easy pedestrian access into the property.

Land uses adjacent to the subject site include:

- To the South Residential and unimproved property
- To the North Residential
- To the West Residential and open space
- To the East Residential and open apace

METHODS

Desktop Review

Prior to visiting the subject site, LCG conducted a desktop review of readily available mapping resources and other pertinent information including:

- Lewis County Web Map
 (http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm).

 This source provided parcel information, aerial photographs, physical attributes, and other information from the Lewis County Assessor.
- US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (https://www.fws.gov/wetlands/data/mapper.html). This mapping source depicts wetlands and streams throughout the United States.
- US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). This source depicts mapped soils including hydric soils throughout the United States.
- Washington Department of Natural Resources Forest Practices Application Mapping Tool (https://fpamt.dnr.wa.gov/default.aspx). This mapping source depicts streams and wetlands in Washington State.
- Washington Department of Fish and Wildlife Salmonscape
 (http://apps.wdfw.wa.gov/salmonscape/map.html). This mapping source depicts streams and fish distribution in Washington State.

 Washington Department of Fish and Wildlife Priority Habitat and Species (http://apps.wdfw.wa.gov/phsontheweb/). This mapping source depicts priority habitats and species throughout Washington State.

State Regulations

Wetlands are regulated by Washington Department of Ecology (Ecology) under the Water Pollution Control Act and the Shoreline Management Act. The State Environmental Policy Act (SEPA) process is also used to identify potential wetland-related concerns early in the permitting process. All proposed direct and identified indirect impacts to wetlands are reviewed and approved/denied by Ecology using the regulations previously listed.

Streams are regulated by Washington Department of Fish and Wildlife under the State Hydraulic Code, Chapter 77.55 Revised Code of Washington. Projects involving activities within, over, or beneath jurisdictional streams are subject to the Hydraulic Project Approval (HPA) permitting process administered by WDFW.

Federal Regulations

Wetlands are regulated as "waters of the United States" under Section 404 of the Clean Water Act. Section 404 regulations are administered by the US Army Corps of Engineers (USACE).

Local Regulations

Wetlands and other critical areas are regulated by Chehalis Municipal Code (CMC) Title 17 – Division III.

Field Investigations

On November 13, 2020, LCG visited the subject site to collect site information, delineate jurisdictional wetlands, and collect site data. Weather conditions at the time of the site investigation consisted of overcast skies with a high of 49.5°F and 0.01 inches of rain the previous 24 hours. Recorded climatological history from the Chehalis Airport two weeks prior to visiting the site was characterized with high temperatures ranging from 41.3 to 67.2°F and low temperatures ranging from 25.0 to 58.5°F. Total recorded precipitation two weeks prior to the site visit (October 30 – November 12) was recorded at 2.91 inches (Table 1, Appendix C).

Table 1: Weather Data at Chehalis Airport, Washington.

Date	Minimum Temp (Deg F)	Maximum Temp (Deg F)	Total Precipitation (in)
10/30/2020	37.4	59.3	0.16
10/31/2020	32.9	59.3	0.01
11/1/2020	32.2	64.8	0
11/2/2020	31.0	67.2	0
11/3/2020	38.5	59.0	0.60
11/4/2020	58.5	64.0	0.33

11/12/2020	35.0	46.3 Total:	0.01 2.91
11/11/2020	34.2	42.2	0.05
11/10/2020	37.3	48.1	0.39
11/9/2020	25.0	41.3	0.13
11/8/2020	25.3	48.3	0
11/7/2020	30.3	42.2	0
11/6/2020	33.2	49.4	0.45
11/5/2020	46.2	59.8	0.78

Data from Agweathernet

Site investigation work tasks included:

- Documentation of current site conditions
- Documentation of adjacent land uses
- Delineating and flagging of wetlands and streams
- Documentation of wetland/upland conditions with Test Plots

Wetlands were delineated according to methods outlined in the U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0). Data documenting vegetation, soils, and hydrology were collected and used to determine wetland and uplands at the site. A single depressional wetland (Wetland A) was located in the central portion of the subject site. Wetland boundaries were delineated using documented test plots and subsequently surveyed by Goodman Land Survey, Inc.

Vegetation

Upland vegetation at the site is a mix of grasses and weeds with a few scattered clumps of willow in the wetland area. On-site wetland areas are dominated by shore pine, reed canary grass and spiraea. Table 2 summarizes wetland and upland vegetation observed at the subject site.

Table 2: Vegetation Observed

Scientific Name	Common Name	Wetland Indicator
		Code
Cirsium arvense	Canada Thistle	FAC
Corylus cornuta	Beaked Hazelnut	FACU
Crataegus douglasii	Black Hawthorn	FAC
Cytisus scoparius	Scotch Broom	UPL
Dactylis glomerata	Orchard Grass	FACU
Daucus carota	Queen Anne's Lace	FACU

Dipsacus fullonum	Teasel	FAC
Fraxinus latifolia	Oregon Ash	FACW
Juncus effusus	Softrush	FACW
Phalaris arundinacea	Reed Canary Grass	FACW
Poa pratensis	Kentucky Bluegrass	FAC
Pseudotsuga menziesii	Douglas Fir	FACU
Rubus armeniacus	Himalayan Blackberry	FAC
Salix lasiandra	Pacific Willow	FACW
Schedonorus arundinaceus	Tall Fescue	FAC

Wetland Indicator Code

OBL = Obligate (>99% found in wetlands)

FACW = Facultative Wetland (>67% to 99% found in wetlands)

FAC = Facultative (33% to 67% found in wetlands)

FACU = Facultative Upland (1% to <33% found in wetlands)

UPL = Obligate Upland (<1% found in wetlands)

Soils

According to the US Department of Agriculture Natural Resources Conservation Service (NRCS) Web Soil Survey for Lewis County, soils at the site are mapped as summarized in Table 3 and Figure 4).

Table 3: Soil Summary.

Soil #	Soil Name	Slope %	Hydric %
89	Galvin silt loam	0-8	15
118	Lacamas silt loam	0-3	97
194	Scamman silty clay loam	5-15	95

Historic land disturbance activities including fill placement, timber harvest, agricultural practices, and general grading may have altered natural soil conditions at the site resulting in soils that may be somewhat different than those mapped by NRCS.

Hydrology

The subject site generally slopes to the southwest into a slope wetland area in the southwestern portion of the subject site. Seasonal water drains from the wetland into a culvert beneath Jackson Hwy eventually draining into Dillenbaugh Creek, a tributary of the Chehalis River. Figure 6 depicts mapped streams to the north and south of the subject but nothing within adjacent to the subject site.

Mapping

Wetland boundary flagging, roads, property boundaries, topography, and other site features were derived from public mapping sources. Wetland flagging, topography, and property

boundaries were surveyed by Goodman Land Surveying, Inc. with additional points mapped with handheld portable GPS equipment with an implied horizontal accuracy of ± 11 feet.

RESULTS and DISCUSSION

Wetlands

A single slope wetland (Wetland A) was located in the central/southern portion of the subject site ending at the vertical embankment comprising Jackson Hwy (Figure 3). Wetland A is rated a Category III wetland (13 points) with a moderate water quality score of 7 points, a moderate hydrologic score of 5 points, and a moderate habitat score of 5 points (Table 4) according to the Washington State Wetland Rating System for Western Washington, 2014 Update (Appendix B).

Wetland Buffers

According to *CMC 17.23.030*, City of Chehalis requires buffers on jurisdictional wetlands depending on category and habitat score. A Category III wetland with a habitat score of 5 points (20 points under the old system) requires a 100-foot wide buffer. Table 4 summarizes wetland buffer requirements at the subject site based on *CMC 17.23.030*:

Table 4: Wetland Summary.

		We	tland Rating	System ^B			Standard
Wetland ID	HGM ^A	Improving Water Quality	Hydrologic	Habitat	Total	Category ^B	Buffer ^C (ft)
Wetland A	Slope	7	5	5	17	III	100

A Hydrogeomorphic Classification

CONCLUSIONS

A single Category III slope wetland (Wetland A) is located within the south-central portion of the subject site and drains into a culvert beneath Jackson Hwy (Figure 3). The City of Chehalis requires a 100-foot wide buffer on Category III wetlands with a moderate habitat score. As currently designed, Phase 1 of the proposed project is located outside of wetlands. The applicant has chosen to apply to fill the on-site wetland and mitigate using credits purchased from the Chehalis Basin Wetland Mitigation Bank. Phase II will be implemented after wetland impact permits are obtained from City of Chehalis, Washington Department of Ecology, and US Army Corps of Engineers.

^B Washington State Wetland Rating System for Western Washington: 2014 Update

C CMC 17.23.030

LIMITATIONS

The findings and conclusions contained in this document were based on information and data available at the time this document was prepared and evaluated using standard Best Professional Judgment. LCG assumes no responsibility for the accuracy of information and data generated by others. Local, State, and Federal regulatory agencies may or may not agree with the findings and conclusions contained in this document.

REFERENCES

Anderson, P., Meyer, S., Olson, P., Stockdale, E. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Shorelands and Environmental Assistance Program Washington State Department of Ecology Olympia, Washington. Publication no. 16-06-029. October 2016 Final Review.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station. Technical Report Y-87-1. January 1987.

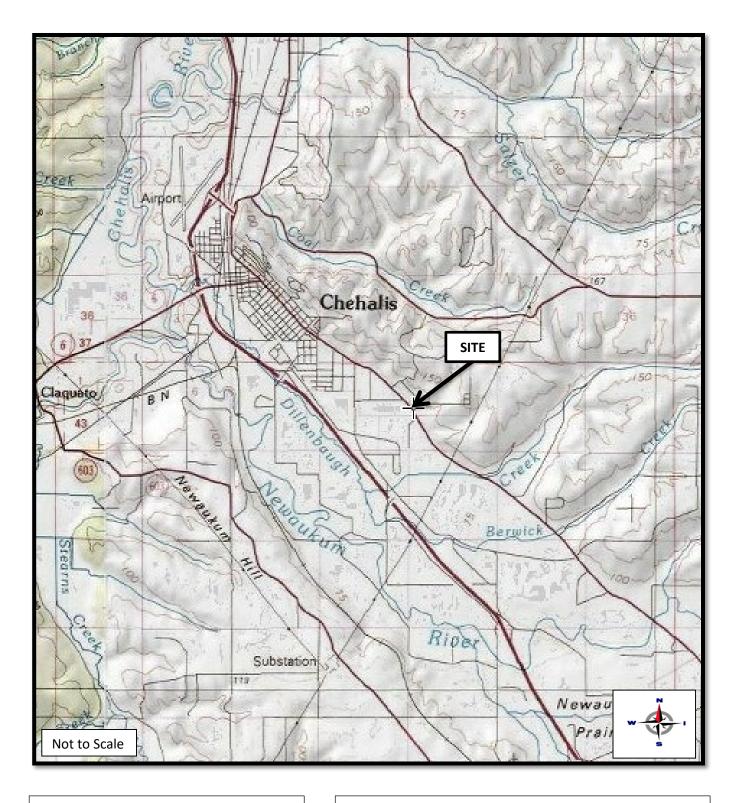
Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. (Publication #14-06-029). Olympia, WA: Washington Department of Ecology.

Lewis County Web Map (http://ims.lewiscountywa.gov/webmaps/composite2/viewer.htm).

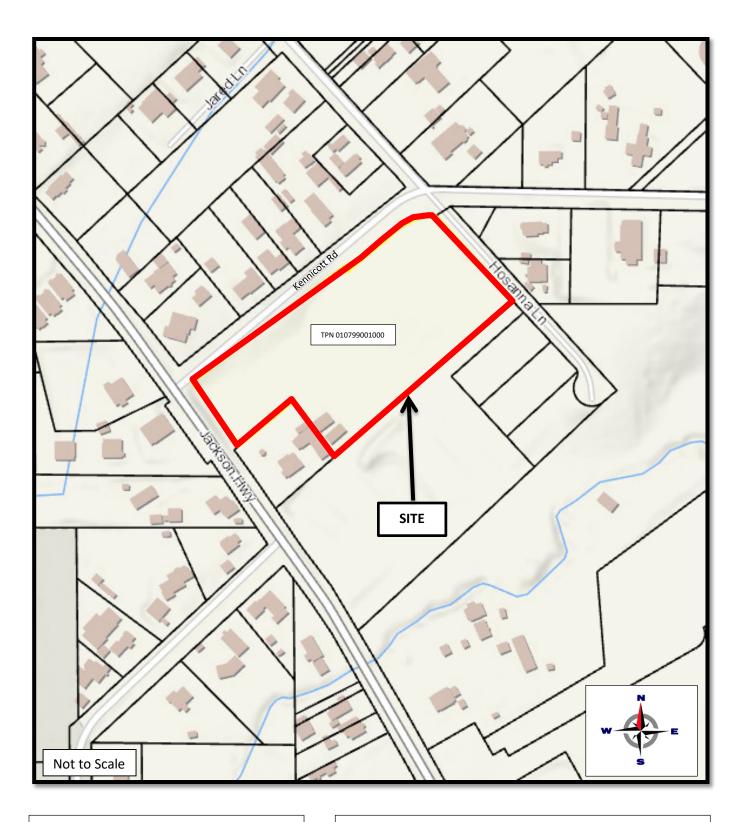
U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx).

US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (https://www.fws.gov/wetlands/data/mapper.html).

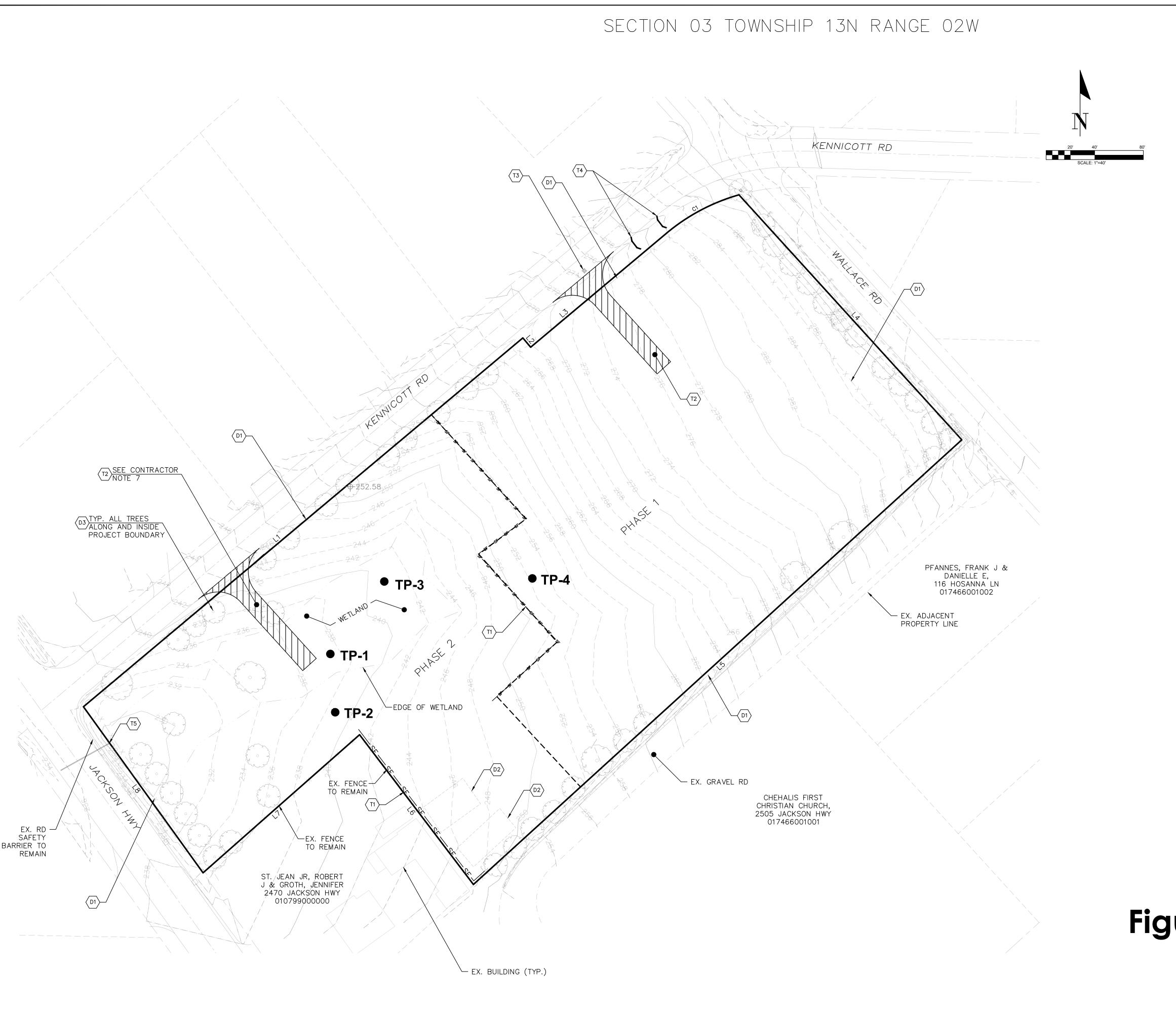

Washington Department of Natural Resources Forest Practices Application Mapping Tool (https://fpamt.dnr.wa.gov/default.aspx).

Washington Department of Fish and Wildlife Salmonscape (http://apps.wdfw.wa.gov/salmonscape/map.html).


Washington Department of Fish and Wildlife Priority Habitat and Species (http://apps.wdfw.wa.gov/phsontheweb/).

FIGURES

Figure 1 – Site Location Map
Figure 2 – Parcel Map
Figure 3 - Site Map
Figure 4 – Soils Map
Figure 5 - National Wetlands inventory Map
Figure 6 – Stream Map



Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure 1
Site Location Map
Jackson Villa #4

Loowit Consulting Group, LLC
Natural Resources & Project
Management
360.431.5118

Figure 2
Parcel Map
Jackson Villa #4

TESC NOTES:

- $\langle T1 \rangle$ INSTALL SILT FENCE. SEE DETAIL 3-4 SHEET C1.2.
- $\langle T2 \rangle$ Install 100' long construction entrance. See detail 3-2 sheet c1.2.
- T3 INSTALL INLET PROTECTION TO EX CATCH BASIN. SEE DETAIL 3-5 SHEET C1.2.
- T4 INSTALL STRAW BALE BARRIER AS SHOWN AND IN ACCORDANCE WITH DETAIL 3-6 ON SHEET C1.2. BALES TO BE INSTALLED ALONG EXISTING DITCH SHOWN ON THIS SHEET. BALES WILL BE REMOVED ONCE SITE IS STABILIZED.
- T5 INSTALL TWO LAYERS OF WATTLES AND A SWATH OF SILT FENCE AROUND THE INLET FOR CULVERT INLET PROTECTION.

DEMOLITION NOTES:

- (D1) EX. FENCE TO BE REMOVED.
- $\langle D2 \rangle$ EX. STRUCTURE TO BE REMOVED.
- (D3) EX. TREE TO BE REMOVED.

NOTES TO CONTRACTOR:

- 1. ALL EXPOSED SOIL SURFACES SHALL BE SEEDED WITH AN EROSION CONTROL SEED MIX OR HYDROSEEDED IF NOT WORKED WITHIN 7 CALENDAR DAYS FROM MAY 1 TO SEPTEMBER 30. SOIL SHALL BE COVERED WITHIN 2 DAYS FROM OCTOBER 1 TO APRIL 30.
- 2. SEEDED AREAS WILL BE COVERED WITH MULCH, HAY OR OTHER PROTECTIVE COVERING APPROVED BY THE ENGINEER TO PREVENT WASHOUT DURING RAIN EVENTS.
- 3. CONTRACTOR SHALL APPLY WATER TO GRAVEL SURFACES DURING CONSTRUCTION TO MINIMIZE FUGITIVE DUST.
- 4. ROUTINE INSPECTION AND MAINTENANCE OF ALL INSTALLED EROSION AND SEDIMENT CONTROL BMPS, ESPECIALLY AFTER STORMS, IS REQUIRED.
- 5. PERIODIC STREET CLEANING MAY BE NECESSARY TO REMOVE ANY SEDIMENT TRACKED OFF THE SITE.6. IN THE EVENT PROPOSED BMPS FAIL, APPROPRIATE
- MEASURES MUST BE TAKEN TO STOP SEDIMENTS FROM ENTERING WATERWAYS.

7.	NO	CON	STRUC	TION	OR	DEM	IOLITION	WILL	ΒE	ALLOWED	IN	
	PHA	SE 2	AREA	UNTI	L ST	ATE	AUTHOR	IZATIO	N.			

	LINE TABLE	
Line #	Bearing	Length
L1	S49° 58′ 51.00″W	472.03
L2	N40° 01' 09.00"W	10.00
L3	S49° 58' 51.00"W	145.84
L4	N42° 17' 06.00"W	272.52
L5	N47° 40′ 14.69″E	543.52
L6	N37° 13′ 46.00″W	154.81
L7	N48° 33′ 44.00″E	171.73
L8	S35° 44′ 51.00″E	168.43

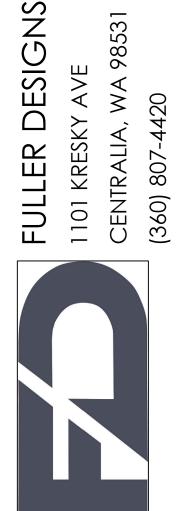
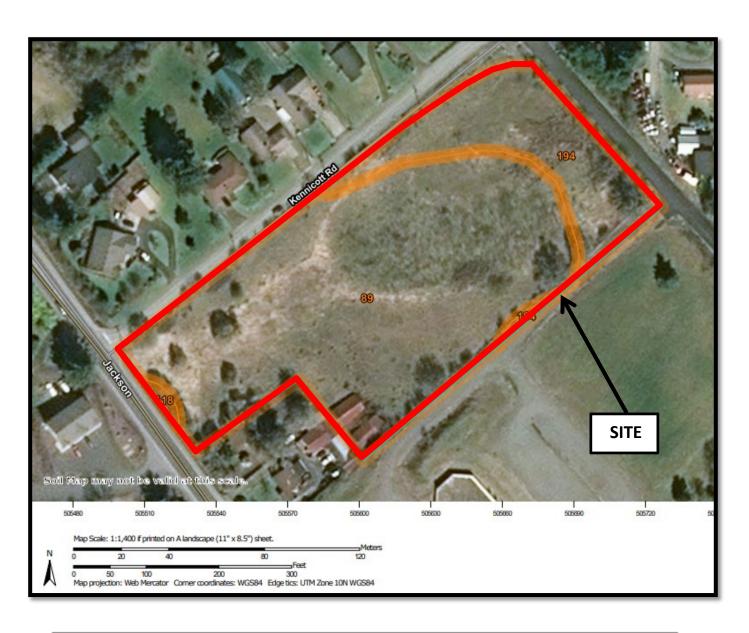

CUR'	VE TA	BLE
Curve #	Radius	Length
C1	161.44	68.03

Figure 3 - Site Map

PRELIMINARY FOR PERMIT ONLY

EX. CONDITION, DEMO AND TESC PLAN
SCALE:


1:40
DATE: O1/20/21
SCALE:
1:40
DATE: SCALE: SCALE:
JACKSON VILLA 4

DATE:	01/20/21	-		
REV: DESCRIPTION:	PRELIMINARY - FOR PERMIT			
REV:	0			

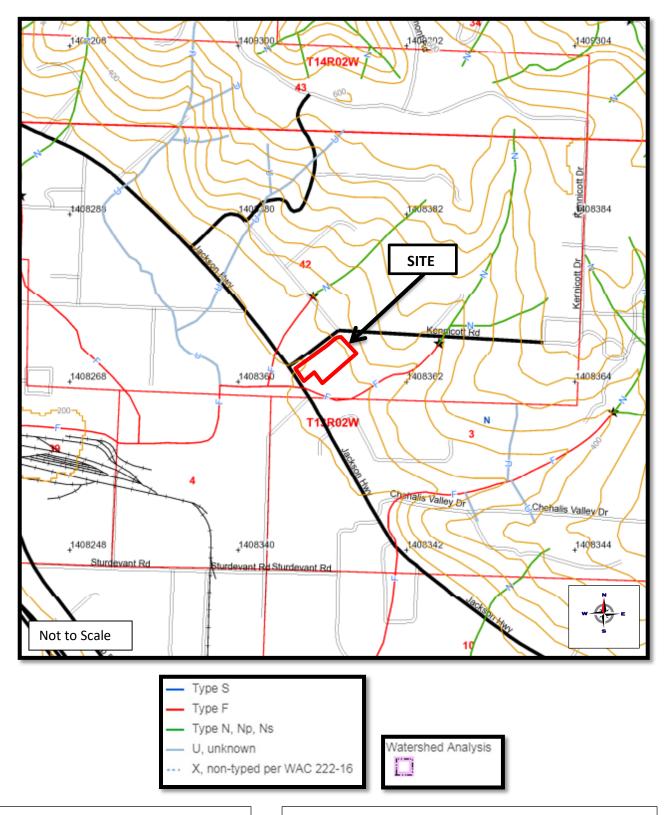
C1.1

2 OF 36



Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
89	Galvin silt loam, 0 to 8 percent slopes	3.5	77.5%
118	Lacamas silt loam, 0 to 3 percent slopes	0.0	0.5%
194	Scamman silty clay loam, 5 to 15 percent slopes	1.0	22.0%
Totals for Area of Interest		4.5	100.0%

Loowit Consulting Group, LLC
Natural Resources & Project
Management
360.431.5118


Figure 4
Soils Map
Jackson Villa #4

Loowit Consulting Group, LLC
Natural Resources & Project Management
360.431.5118

Figure 5
National Wetlands Inventory Map
Jackson Villa #4

Loowit Consulting Group, LLC
Natural Resources & Project
Management
360.431.5118

Figure 6
Stream Map
Jackson Villa #4

APPENDIX A - DATA FORMS

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: Chehali	s/Lewis S	ampling Date: 11/1		
Applicant/Owner: Lakewood Investors, LLC		<u>.</u>	State: W		Sampling Poin		
Investigator(s): T. Haderly				, Range: Section 3			
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI		007000		Slope (%): 0	-3%
Subregion (LRR): A Soil Map Unit Name: #89 Galvin silt loam	Lat: 46.641	101		927069 WI classification: PE		584	
Are climatic / hydrologic conditions on the site typical fo	or this time of	vear2 Ves⊠					
Are Vegetation□, Soil□, or Hydrology□ significantly	y disturbed?	Ar	ea "Normal (Circumstances" pres	ent? Yes⊠ No□		
Are Vegetation , Soil , or Hydrology naturally pr				iny answers in Rem			
SUMMARY OF FINDINGS – Attach site map		ampling po	int locatio	ns, transects, ir	nportant featur	es, etc.	
Hydrophytic Vegetation Present? Yes ⊠ No ☐ Hydric Soils Present? Yes ⊠ No ☐ Watten delta are Present?			mpled Area Wetland?	Yes⊠	No□		
Wetland Hydrology Present? Yes ⊠ No ☐ Remarks:							
VEGETATION (Use scientific names)							
	Absolute	Dominant	Indicator	Dominance Test	Worksheet		
Tree Stratum (Plot size:30 ft radius)	% Cover	Species?	Status	N CB			
1	%			Number of Domin That Are OBL, FA		1	(A)
2. 3.	% %	-		That Are Obe, I A	OVV, OI I AO.		
3. 4.	//			Total Number of D	Dominant	1	(B)
Total Cover:	%			Species Across A	ll Strata:	- ' -	_ (D)
•				Doroont of Domin	ant Canada	100	(A/B)
Sapling/Shrub Stratum (Plot size: 5 ft. radius)				Percent of Domina That Are OBL, FA			_
1	%			Prevalence Index			
2.	%		-	Total % Co		Multiply by:	
3.	%			OBL species	0 x 1:		
4.	%			FACW species	0 x 2	= 0	
5.	%			FAC species	0 x 3:		
Total Cover:	%			FACU species	<u>0</u> x 4:		
Herb Stratum (Plot size: 5 ft radius) 1. Phalaris arundinacea	100%	\ ' 00	FACW	UPL species Column Totals:	0 x 5:	= 0	(D)
2.	100%	yes	FACW	╡	alence Index = B/A	-	(B)
3.					etation Indicators		
4.			-		est for Hydrophytic		
	%				nce Test is >50%	Ü	
5.	%				nce Index is ≤3.01		
6.	%				ogical Adaptations ¹		
				☐ Supporting of	data In Remarks or	on a separa	ite sheet)
7. 8.	<u>%</u> %			□ Wetland No	n-Vascular Plants ¹		
Total Cover:	100%				: Hydrophytic Veget	tation¹ (Expl	ain)
Woody Vine Stratum (Plot size: 30 ft radius)	10070				Trydropriyae vege	idilon (Expi	anij
1	%			¹ Indicators of hydr	ric soil and wetland	hydrology	
2.	%				unless disturbed or).
Total Cover:	%						
				Hydrophytic Vege	tation Present?		
% Bare Ground in Herb Stratum 0%						Yes⊠	No□
Remarks:							

SOIL

OIL								Sampling Point: TP-1
Profile D	Description: (Desc	ribe to the dep	oth needed to doc	ument the ind	icator or cor	nfirm the	e absence of indicators.)	
Depth	Matri	v		Redox Feat	iroe			
(inches)	Color (moist)	<u>* </u>	Color (moist)	%	Type ¹	Loc ²	 Texture	Remarks
0-18	10YR3/3	80%	7.5YR4/4	20%	<u>1γρυ</u> _	M	Silt Loam	Ttomants
		%		%				
		%		%				
		%		%				
		%		%				
		<u></u> %		%				
		<u>%</u>		%				
1-							21 11 21 2	
						and Grai	ns. ² Location: PL=Pore Lini	
		pplicable to all	LRRs, unless oth)		Indicators for Problemat	ic Hydric Soils
☐ Histor	Epipedon (A2)		☐ Sandy Redox☐ Stripped Mat				☐ 2 cm Muck (A10)☐ Red Parent Material (TF	(3)
	Epipedoii (Az)		☐ Stripped Mat	IIX (30)			☐ Very Shallow Dark Surfa	
☐ Black	Histic (A3)		☐ Loamy Muck	v Mineral (F1) (except MLR	A 1)	Other (Explain in Remai	
	ogen Sulfide (A4)		☐ Loamy Gleye		, o. 1. o. p. 1	,		
-	eted Below Dark Su	ırface (A11)	☐ Depleted Ma					
	Dark Surface (A12	٠, ,	☐ Redox Dark					
	y Mucky Minerals (-	☐ Depleted Dai	` '			3Indicators of budrophytic v	agatation and
	y Gleyed Matrix (S	,	☐ Redox Depre				³ Indicators of hydrophytic v	•
	ive Layer (if prese		☐ IXedox Depie	5510115 (1 0)			Wetland hydrology mus	st be present
Restrict	ive Layer (ii prese	iii).						
Type:						H	ydric Soil Present?	
,,								Yes⊠ No⊡
Depth (ir	nches):							
Remarks	S:					· ·		
HYDRO	DLOGY							
Wetland	Hydrology Indica	ators:					Secondary Indicate	
							(2 or more required	<u>d)</u>
Primary	Indicators (min. of	one required; cl	neck all that apply)					
	144			(5.0)			☐ Water Stained L	
	ce Water (A1)		☐ Water-Staine		(except MLR	A 1, 2,		
_	Water Table (A2)		☐ Salt Crust (B	•			□ Drainage Patter □ Drainage Pa	, ,
	ation (A3)		Aquatic Inve				☐ Dry-Season Wa	
	r Marks (B1)		☐ Hydrogen Su					le on Aerial Imagery (C9)
	nent Deposits (B2)		Oxidized Rhi			ts (C3)	Geomorphic Po	
Drift [Deposits (B3)		☐ Presence of				☐ Shallow Aquitar	d (D3)
☐ Algal	Mat or crust (B4)		☐ Recent Iron I	Reduction in Til	led Soils (C6))	☐ FAC-Neutral Te	st (D5)
☐ Iron □	Deposits (B5)		☐ Stunted or St	ressed Plants ((D1) (LRR A)		☐ Raised Ant Mou	ınds (D6) (LRR A)
□ Surfa	ce Soil Cracks (B6)	☐Other (Explain	n in Remarks)			☐ Frost-Heave Hu	mmocks (D4)
☐ Inund	lation Visible on Ae	erial Imagery (B	7)					
			•					
Field Ob	servations:		_					
	Water Present?	Yes 🛚		epth (Inches):				
	able Present?	Yes 🖾		epth (Inches):		We	etland Hydrology Present?	
	on Present?	Yes 🛚	No 🗌 D	epth (Inches):	<u>surface</u>			Yes 🛛 No 🗌
	Capillary fringe)	`Aug a ag a	a a sa i ka si a a · · · · II · · · ·	ial mhatas are	dana la	\ :f -	wailahla.	
Describe	Recorded Data (S	stream gauge, n	nonitoring well, aer	iai priotos, prev	rious inspecti	uns), it a	avallable:	
Remarks	S:							
								

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: Chehali		ampling Date: 11/13		
Applicant/Owner: Lakewood Investors, LLC			State: W		Sampling Point:		
Investigator(s): T. Haderly				, Range: Section 3,			
Landform (hillslope, terrace, etc.): Terrace		Local relief: S		000005		Slope (%): <u>0</u>	-3%
Subregion (LRR): A Soil Map Unit Name: #89 Galvin silt loam	Lat: 46.641	13	Long: -122.	920003 WI classification: non	Datum: WGS	304	
Are climatic / hydrologic conditions on the site typical for	or this time of	vear? Yes⊠					
Are Vegetation ☐, Soil ☐, or Hydrology ☐ significantly				Circumstances" prese			
Are Vegetation□, Soil□, or Hydrology□ naturally pr				any answers in Rema			
SUMMARY OF FINDINGS – Attach site map			-	-		es, etc.	
Hydrophytic Vegetation Present? Yes ⊠ No □							
Hydric Soils Present? Yes ☐ No 🖸			mpled Area	V 🗆	N - N		
Wetland Hydrology Present? Yes ☐ No ☑		within a	Wetland?	Yes⊡	NOM		
Remarks:							
VEGETATION (Use scientific names)							
	Absolute	Dominant	Indicator	Dominance Test	Worksheet		
Tree Stratum (Plot size:30 ft radius)	% Cover	Species?	Status				
1.	%	·		Number of Domina		1	(A)
2.	%			That Are OBL, FAC	CW, or FAC:		-
3	%			Total Number of D	ominant		
4	%		-	Species Across All		1	(B)
Total Cover:	%			Opening 7 to 1000 7 to	.	100	(
				Percent of Domina		100	(A/B)
Sapling/Shrub Stratum (Plot size: 5 ft. radius)	0.4			That Are OBL, FAC			
1	<u>%</u> %			Prevalence Index		برما براهامیا	
2. 3.	0/		_	Total % Cov OBL species	0 x 1=	Multiply by: 0	
4.				FACW species	0 x 1=		
5.				FAC species	0 x 3=		
Total Cover:	%			FACU species	0 x 4=		
Herb Stratum (Plot size: 5 ft radius)				UPL species	0 x 5=	- 0	
1. Dipsacus fullonum	90%	yes	FAC	Column Totals:	0 (A)	0	(B)
2. Schedonorus arundinaceus	10%	no	FAC		lence Index = B/A=		
3. Poa pratensis 4.	10%	no	FAC		etation Indicators: est for Hydrophytic		
4.	%			☐ 1 - Kapid Te		vegetation	
5.	%		_	3 - Prevalence			
6.	%		-		gical Adaptations ¹	(Provide	
				supporting d	ata In Remarks or o	on a separa	ite sheet)
7	%						
8.	<u>%</u>		-		n-Vascular Plants ¹	1 /=	- 1 - 1
Total Cover: Woody Vine Stratum (Plot size: 30 ft radius)	110%			Problematic	Hydrophytic Vegeta	ation (Expia	ain)
1	%			¹ Indicators of hydri	c soil and wetland h	hydrology	
2.	// 0				inless disturbed or p		;.
Total Cover:	%		-	,,			
Total Cover.				Hydrophytic Veget	ation Present?		
% Bare Ground in Herb Stratum 0%						Yes⊠	No□
Remarks:				1			

SOIL Sampling Point: TP-2

JOIL								Sampling Point: TP-2
Profile De	escription: (Desci	ribe to the de	pth needed to	document the ind	licator or confi	irm the ab	sence of indicators.)	
Desti	84-4-			D. I. F. d				
Depth	Matrix		0 1 / :	Redox Feat		. 2	- .	5 .
(inches)	Color (moist)	<u>%</u>	Color (moi		Type ¹	Loc ²	Texture	Remarks
0-18	10YR5/3	100%		<u>%</u> %			Silt Loam	
								
								
				<u>%</u> %				
								
								
								
1T			MA Dadwaad N		Ot O	-l Oi	21 anations DI Dana Linia	- M M-4
							² Location: PL=Pore Linin	
		pilicable to al		s otherwise noted	.)		dicators for Problemati	c Hyaric Solis
Histos			☐ Sandy F				2 cm Muck (A10)	2)
☐ HISTIC I	Epipedon (A2)		☐ Stripped	l Matrix (S6)			Red Parent Material (TF2 Very Shallow Dark Surface	
□ Block I	⊔iatia (ΛΩ)		□ Loomy N	Auglay Minoral (E1)	over MIDA			
☐ Black I			-	Mucky Mineral (F1)	(except wilka	1)	Other (Explain in Remark	(S)
	gen Sulfide (A4)		-	Gleyed Matrix (F2)				
	ed Below Dark Su	, ,		d Matrix (F3)				
☐ Thick [Dark Surface (A12))	Redox E	Oark Surface (F6)				
☐ Sandy	Mucky Minerals (S	S1)	□ Deplete	d Dark Surface (F7)		3In	dicators of hydrophytic ve	egetation and
	Gleyed Matrix (S4		□ Redox D	Depressions (F8)			Wetland hydrology must	=
	e Layer (if prese						Wolland Hydrology mace	DO PROCONC
		,.						
Type:						Hvdrid	Soil Present?	
,, <u> </u>						1		Yes⊡ No⊠
Depth (inc	ches):							
Remarks:								
HYDRO	LOGY							
	Hydrology Indicat	tors:					Secondary Indicator	·s
Wonana .	nyarology maioa	.0.0.					(2 or more required)	
Primary Ir	ndicators (min. of o	ne required: c	heck all that a	oply)			<u>(= 0</u>	
				FF-J7			Water Stained Le	eaves (R9)
☐ Surfac	e Water (A1)		☐ Water-S	tained Leaves (B9)	(except MLRA	1. 2. 4A. 8		
	Vater Table (A2)		☐ Salt Cru		(oxcopt iii=iti)	, _, ., ., .	☐ Drainage Pattern	
☐ Satura	` '			Invertebrates (B13)			☐ Dry-Season Water	
	Marks (B1)							, ,
_	` '			en Sulfide Odor (C1)		(C2)		e on Aerial Imagery (C9)
	ent Deposits (B2)			d Rhizospheres alor		(03)	☐ Geomorphic Pos	
	eposits (B3)			e of Reduced Iron (☐ Shallow Aquitard	
	Nat or crust (B4)			ron Reduction in Ti	, ,		☐ FAC-Neutral Tes	` '
☐ Iron De	eposits (B5)		☐ Stunted	or Stressed Plants	(D1) (LRR A)		Raised Ant Mour	nds (D6) (LRR A)
☐ Surfac	e Soil Cracks (B6)		☐Other (E	xplain in Remarks)			☐ Frost-Heave Hun	nmocks (D4)
☐ Inunda	tion Visible on Aer	rial Imagery (B	57)					
Field Of								
	servations:	V	N. C	Desired to the second				
	/ater Present?	Yes 🗌	No ⊠	Depth (Inches):		,		
	ole Present?	Yes 🗌	No ⊠	Depth (Inches):		Wetlan	d Hydrology Present?	v
	Present?	Yes 🗌	No 🖂	Depth (Inches):				Yes ☐ No 🏻
	Capillary fringe)			Landal abote	dana dana cont		-LI	
Describe	kecorded Data (St	ream gauge, r	nonitoring wel	l, aerial photos, prev	vious inspectior	ıs), ıt avaıla	adie:	
Remarks:								
nemans.								

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: Chehali	is/Lewis S	ampling Date: 11/13		
Applicant/Owner: Lakewood Investors, LLC			State: W		Sampling Point		
Investigator(s): T. Haderly				, Range: Section 3			
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI		007007		Slope (%): <u>(</u>)-3%
Subregion (LRR): A Soil Map Unit Name: #89 Galvin silt loam	Lat: 46.609	926	_Long: <u>-122.</u>	927337 WI classification: PE	Datum: WG	584	
Are climatic / hydrologic conditions on the site typical fo	or this time of	vear? Ves⊠					
Are Vegetation□, Soil□, or Hydrology□ significantly	y disturbed?	Ar	ea "Normal (Circumstances" pres	ent? Yes⊠ No□		
Are Vegetation , Soil , or Hydrology naturally pr			-	any answers in Rema			
SUMMARY OF FINDINGS – Attach site map		ampling po	int locatio	ns, transects, in	nportant feature	es, etc.	
Hydrophytic Vegetation Present? Yes ⊠ No [Is the Sa	mpled Area				
Hydric Soils Present? Yes ⊠ No ☐			Wetland?	Yes⊠	No□		
Wetland Hydrology Present? Yes ⊠ No ☐ Remarks:				<u> </u>			
Remarks.							
VEGETATION (Use scientific names)				,			
	Absolute	Dominant	Indicator	Dominance Test	Worksheet		
Tree Stratum (Plot size:30 ft radius)	% Cover	Species?	Status	Number of Demine	ont Chasins	_	
1	<u>%</u>			Number of Domina That Are OBL, FA		2	_ (A)
2. 3.	% %			- Illat Ale OBL, I Al	CVV, OF FAC.		
3. 4.	%			Total Number of D	ominant	2	(B)
Total Cover:				Species Across Al	l Strata:		_ (D)
Total Covol.	70				. •	100	(A/B)
Carling/Object Object on (Diet sings 5 ft and inc)				Percent of Domina			_ (' /
Sapling/Shrub Stratum (Plot size: 5 ft. radius) 1. Salix lasiandra	10%	ves	FACW	That Are OBL, FA			
2	10% %	yes	FACW	Total % Cov		Multiply by:	
3.	// //////////////////////////////////		_	OBL species	0 x 1=		
4.	%		1	FACW species	0 x 2=		
5.	%			FAC species	0 x 3=		
Total Cover:	10%			FACU species	0 x 4=		
Herb Stratum (Plot size: 5 ft radius)				UPL species	0 x 5=		
1. Phalaris arundinacea	100%	yes	FACW	Column Totals:	0 (A)	0	(B)
2	<u>%</u>				alence Index = B/A=		
3. 4.	%				etation Indicators: est for Hydrophytic		
4.	%				nce Test is >50%	vegetation	
5.	%		-	3 - Prevalen			
6.	,				ogical Adaptations ¹	(Provide	
	%				ata In Remarks or		ate sheet)
7.	%						
8.	%				n-Vascular Plants ¹		
Total Cover:	100%			☐ Problematic	Hydrophytic Veget	ation¹ (Expl	ain)
Woody Vine Stratum (Plot size: 30 ft radius)	0/			1 malicators of budge	ام ممالا میں ام مما	برمامه المسادر	
1. 2.	<u>%</u> %		-		ic soil and wetland inless disturbed or		,
				Must be present, t	iniess disturbed of	probleman	,.
Total Cover:				Hydrophytic Veget	totion Brocont?		
% Bare Ground in Herb Stratum 0%				nyuropnyuc vege	iation Fresent?	Yes⊠	No□
Remarks:						162	NO
itemarks.							

SOIL

SUIL								Sampling Point: TP-3
Profile D	escription: (Desci	ribe to the dep	th needed to do	cument the ind	icator or con	nfirm the	absence of indicators.)	, ,
Depth	Matrix			Redox Feat		. 0	_	
(inches)	Color (moist)	<u>%</u>	Color (moist)		Type ¹	Loc ²	Texture	Remarks
0-18	10YR3/3	<u>80%</u> _	7.5YR4/4	<u>20%</u> %	D	M	Silt Loam	
								
							·-	·
				<u> </u>				
				<u> </u>				
		%		%				
		%		%				
¹ Type:	C=Concentration, [D=Depletion, R	M=Reduced Mat	rix, CS=Covered	or Coated Sa	and Grain	s. ² Location: PL=Pore Linir	ng, M=Matrix
Hydric S	oil Indicators: (Ap	plicable to all	LRRs, unless of	therwise noted.)		Indicators for Problemat	ic Hydric Soils
☐ Histos	al (A1)		☐ Sandy Red	ox (S5)			☐ 2 cm Muck (A10)	
☐ Histic	Epipedon (A2)		☐ Stripped Management	atrix (S6)			☐ Red Parent Material (TF	
							☐ Very Shallow Dark Surfa	
	Histic (A3)		-	cky Mineral (F1) (except MLR	A 1)	Other (Explain in Remar	ks)
-	gen Sulfide (A4)			yed Matrix (F2)				
Deple	ted Below Dark Su	rface (A11)	□ Depleted IV	latrix (F3)				
☐ Thick	Dark Surface (A12))	☐ Redox Darl	k Surface (F6)				
☐ Sandy	Mucky Minerals (S	S1)	□ Depleted D	ark Surface (F7)			³ Indicators of hydrophytic ve	egetation and
☐ Sandy	Gleyed Matrix (S4	.)	☐ Redox Dep	ressions (F8)			Wetland hydrology mus	_
	ve Layer (if prese		<u> </u>	, ,				
	, , ,	,						
Type:	<u></u> ,					Hy	dric Soil Present?	
								Yes⊠ No⊡
Depth (in	ches):							
Remarks	:							
HYDRO	LOGY							
Wetland	Hydrology Indicat	tors:					Secondary Indicato	rs
							(2 or more required)
Primary I	ndicators (min. of o	ne required; ch	neck all that apply	y)				
							☐ Water Stained L	eaves (B9)
	ce Water (A1)			ned Leaves (B9)	(except MLR	A 1, 2, 4		
	Vater Table (A2)		☐ Salt Crust (B11)			□ Drainage Patteri	
Satura	ation (A3)			ertebrates (B13)			☐ Dry-Season Wa	. ,
☐ Water	Marks (B1)		☐ Hydrogen S	Sulfide Odor (C1)			☐ Saturation Visible	e on Aerial Imagery (C9)
☐ Sedim	ent Deposits (B2)			hizospheres alon	g Living Root	ts (C3)	☐ Geomorphic Pos	sition (D2)
☐ Drift □	eposits (B3)		☐ Presence c	f Reduced Iron (C4)		☐ Shallow Aquitare	d (D3)
	Mat or crust (B4)			Reduction in Til)	☐ FAC-Neutral Tes	
_	eposits (B5)			Stressed Plants			☐ Raised Ant Mou	
	ce Soil Cracks (B6)			ain in Remarks)	(= :) (=::::)		☐ Frost-Heave Hu	
	ation Visible on Aer	ial Imagary (P	_ ` '	alli ili ivelilaiks)			☐ 1 103t-1 leave 1 lui	IIIIOCKS (D4)
	ation visible on Aei	iai iiiiageiy (b	()					
Field Ob	servations:							
	Vater Present?	Yes ⊠	No 🗌	Depth (Inches):	1-2			
	ble Present?	Yes ⊠	_	Depth (Inches):		Wet	land Hydrology Present?	
	n Present?	Yes ⊠	_	Depth (Inches):	_	1101	······································	Yes ⊠ No 🗌
	Capillary fringe)		_			İ		
	Recorded Data (St	ream gauge, n	nonitoring well, a	erial photos, prev	vious inspection	ons), if av	railable:	
	(5 5 ,	5 ,	. ,,	•	,.		
Remarks								

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys and Coast Region

Project/Site: Jackson Villa 4 - XXXX Jackson Hwy		City/Co	unty: <u>Chehali</u>		ampling Date: 11/13/		
Applicant/Owner: Lakewood Investors, LLC			State: W		Sampling Point:		
Investigator(s): T. Haderly				, Range: Section 3,			
Landform (hillslope, terrace, etc.): Terrace		Local relief: SI		007040		lope (%): 0	-3%
Subregion (LRR): ASoil Map Unit Name: #89 Galvin silt loam	Lat: 46.640	1792		927243 WI classification: none		84	
Are climatic / hydrologic conditions on the site typical fo	or this time of	vear? Yes⊠					
Are Vegetation□, Soil□, or Hydrology□ significantly				Circumstances" prese			
Are Vegetation□, Soil□, or Hydrology□ naturally pr				any answers in Rema			
SUMMARY OF FINDINGS – Attach site map			-	-		s. etc.	
Hydrophytic Vegetation Present? Yes ⊠ No [,,	portani routaro		
Hydric Soils Present?			mpled Area	=	=		
Wetland Hydrology Present?		within a	Wetland?	Yes⊡	No⊠		
Remarks:	_	1					
VEGETATION (Use scientific names)							
	Absolute	Dominant	Indicator	Dominance Test V			
Tree Stratum (Plot size:30 ft radius)	% Cover	Species?	Status				
1.	%			Number of Domina		1	(A)
2.	%			That Are OBL, FAC	CW, or FAC:		•
3	%			Total Number of Do	ominant		
4	%			Species Across All		1	(B)
Total Cover:	%			openies / torocs / tir	Oli did.	100	(
				Percent of Dominar		100	(A/B)
Sapling/Shrub Stratum (Plot size: 5 ft. radius)				That Are OBL, FAC			
1.				Prevalence Index		يرمط براه ثقابيا	
2. 3.	0/		_	Total % Cov	0 x 1=	ultiply by: 0	_
4.				FACW species	0 x 2=	0	_
5.	%		-	FAC species	0 x 3=	0	
Total Cover:	%			FACU species	0 x 4=	0	
Herb Stratum (Plot size: 5 ft radius)	_			UPL species	0 x 5=	0	
1. Schedonorus arundinaceus	70%	yes	FAC	Column Totals:	0 (A)	0	(B)
2. Poa pratensis	20%	no	FAC		lence Index = B/A=_		
3. <u>Cirsium arvense</u>	20%	no no	FAC FAC	Hydrophytic Vege	etation indicators: est for Hydrophytic V	/ogotation	
4. Dipsacus fullonum	10%	110	FAC	☐ 1 - Rapid Tes		egetation	
5.	%			=	ce Index is ≤3.0¹		
6.	%				gical Adaptations¹ (F	Provide	
				supporting da	ata In Remarks or o	n a separa	te sheet)
7	%						
8Total Cover:	4000/				-Vascular Plants ¹	4: 1 / □ 1.	-:\
Woody Vine Stratum (Plot size: 30 ft radius)	120%			☐ Problematic F	Hydrophytic Vegetat	iion (Exbia	ain)
1	%			¹ Indicators of hydric	c soil and wetland h	vdrology	
2.	// 0				nless disturbed or p		
Total Cover:	%		_	,			
Total Gover.				Hydrophytic Vegeta	ation Present?		
% Bare Ground in Herb Stratum 0%				ingan opingan regen		Yes⊠	No□
Remarks:							

SOIL

SOIL							Sampling Point: TP-4
Profile Description: (Descri	ibe to the dep	th needed to doc	ument the ind	icator or confi	rm the a	bsence of indicators.)	1 9
Depth Matrix			Redox Feat			_	
(inches) Color (moist) 0-18 10YR5/3	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
<u>0-18</u> <u>10YR5/3</u>	<u>100%</u>		<u>%</u>			Silt Loam	
			<u> </u>				
	/// // // // // // // // // // // // //						
	// 0		<u> </u>				
	 %						
	%		%				
	%		%				
¹ Type: C=Concentration, D	Depletion, RI	M=Reduced Matrix	k, CS=Covered	or Coated San	d Grains	. ² Location: PL=Pore Linir	ng, M=Matrix
Hydric Soil Indicators: (Ap	plicable to all	LRRs, unless oth	nerwise noted.)		Indicators for Problemati	c Hydric Soils
☐ Histosal (A1)		☐ Sandy Redox	x (S5)			☐ 2 cm Muck (A10)	
☐ Histic Epipedon (A2)		Stripped Mat	rix (S6)			Red Parent Material (TF:	
						☐ Very Shallow Dark Surfa	
Black Histic (A3)		Loamy Muck		except MLRA	1) [Other (Explain in Remarl	ks)
☐ Hydrogen Sulfide (A4)		☐ Loamy Gleye					
□ Depleted Below Dark Sur	face (A11)	□ Depleted Ma	trix (F3)				
☐ Thick Dark Surface (A12))	☐ Redox Dark :	Surface (F6)				
☐ Sandy Mucky Minerals (S	S1)	☐ Depleted Dar	rk Surface (F7)		3	Indicators of hydrophytic ve	egetation and
☐ Sandy Gleyed Matrix (S4)	☐ Redox Depre	essions (F8)			Wetland hydrology must	=
Restrictive Layer (if presen		<u> </u>	, ,				
,	,						
Type:					Hyd	ric Soil Present?	
							Yes⊡ No⊠
Depth (inches):							
Remarks:							
HYDROLOGY							
Wetland Hydrology Indicat	ors:					Secondary Indicator	
						(2 or more required)	
Primary Indicators (min. of o	ne required; ch	eck all that apply)					
						☐ Water Stained Lo	` ,
☐ Surface Water (A1)		☐ Water-Staine		(except MLRA	1, 2, 4A		•
☐ High Water Table (A2)		☐ Salt Crust (B	•			☐ Drainage Patterr	
Saturation (A3)		Aquatic Inver	, ,			Dry-Season Wat	, ,
☐ Water Marks (B1)		☐ Hydrogen Su	ılfide Odor (C1)			☐ Saturation Visible	e on Aerial Imagery (C9)
☐ Sediment Deposits (B2)		Oxidized Rhi	zospheres alon	g Living Roots	(C3)	☐ Geomorphic Pos	sition (D2)
☐ Drift Deposits (B3)		☐ Presence of	Reduced Iron (C4)		☐ Shallow Aquitard	I (D3)
☐ Algal Mat or crust (B4)		☐ Recent Iron F	Reduction in Til	led Soils (C6)		☐ FAC-Neutral Test	st (D5)
☐ Iron Deposits (B5)		☐ Stunted or St				Raised Ant Mour	
☐ Surface Soil Cracks (B6)		☐Other (Explain		, , ,		☐ Frost-Heave Hur	
☐ Inundation Visible on Aer	ial Imagery (R7	_ ` '	i iii rtomantoj				mileone (B4)
Indidation visible on Aer	iai iiiiageiy (b/	,					
Field Observations:							
Surface Water Present?	Yes □	No ⊠ D	epth (Inches):				
Water Table Present?	Yes 🗌		epth (Inches):		Wetla	and Hydrology Present?	
Saturation Present?	Yes 🗌		epth (Inches):		İ	, , , , , , , , , , , , , , , , , , , ,	Yes 🗌 No 🛛
(Includes Capillary fringe)	_	_	. , ,		İ		
Describe Recorded Data (St	ream gauge, m	onitoring well, aer	ial photos, prev	ious inspection	ns), if ava	ilable:	
Remarks:							

APPENDIX B - WETLAND RATING SUMMARY

RATING SUMMARY – Western Washington

Name of wetland (or ID #):	Wetland "A"		Date of site visit:	11/13/2020
Rated by T. Hader;y		Trained by Ecology? ✓ Yes ☐ No	Date of training	Dec-14
HGM Class used for rating	Slope	Wetland has multip	ole HGM classes? □	Yes ⊡No
Source	of base aerial pho	out the figures requested (figures can be be be be be be be be be be be be be	<u>, , , , , , , , , , , , , , , , , , , </u>	
1 Cotomory of wetlers		<u> </u>	ai characteristics 🗀)	
1. Category of wetland		•	Score for each	
		al score = 23 - 27 tal score = 20 - 22		
	function based			
X	_ ~ ~	otal score = 16 - 19	on three	
	_Category IV - To	otal score = 9 - 15	ratings (order of ratings	

FUNCTION	Improving Hydrologic Water Quality		Habitat						
	List appropriate rating (H, M, L)								
Site Potential	M	M	L						
Landscape Potential	M	L	М						
Value	Н	M	L	Total					
Score Based on Ratings	7	5	5	17					

Score for each function based on three ratings (order of ratings is not important) 9 = H, H, H 8 = H, H, M 7 = H, H, L 7 = H, M, M 6 = H, M, L 6 = M, M, M 5 = H, L, L 5 = M, M, L 4 = M, L, L 3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	Category
Estuarine	
Wetland of High Conservation Value	
Bog	
Mature Forest	
Old Growth Forest	
Coastal Lagoon	
Interdunal	
None of the above	Х

Maps and Figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	A3
Hydroperiods	H 1.2	A1
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	A1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	A1
(can be added to another figure)		Al
Boundary of area within 150 ft of the wetland (can be added to another figure)	S 2.1, S 5.1	A1
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	A2
polygons for accessible habitat and undisturbed habitat		AZ
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	A4
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	A5

HGM Classification of Wetland in Western Washington

For questions 1 -7, the criteria described must apply to the entire unit being rated. If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1 - 7 apply, and go to Question 8.

1. Are	the water levels in the entire unit usual	ly controlled by tides except during floods?
	☑ NO - go to 2	☐ YES - the wetland class is Tidal Fringe - go to 1.1
1	.1 Is the salinity of the water during per	riods of annual low flow below 0.5 ppt (parts per thousand)?
		a Freshwater Tidal Fringe use the forms for Riverine wetlands. Estuarine wetland and is not scored. This method cannot be
	entire wetland unit is flat and precipitat dwater and surface water runoff are NC	ion is the only source (>90%) of water to it. OT sources of water to the unit.
	☑ NO - go to 3 If your wetland can be classified as	☐ YES - The wetland class is Flats a Flats wetland, use the form for Depressional wetlands.
		on the shores of a body of permanent open water (without any the year) at least 20 ac (8 ha) in size;
	☑ NO - go to 4	☐ YES - The wetland class is Lake Fringe (Lacustrine Fringe)
		n be very gradual), I in one direction (unidirectional) and usually comes from seeps. I, or in a swale without distinct banks.
	□ NO - go to 5	☑ YES - The wetland class is Slope
	•	type of wetlands except occasionally in very small and shallow are usually <3 ft diameter and less than 1 ft deep).
	s the entire wetland unit meet all of the The unit is in a valley, or stream cha from that stream or river, The overbank flooding occurs at lea	nnel, where it gets inundated by overbank flooding
	□ NO - go to 6	☐ YES - The wetland class is Riverine
NOTE:	The Piverine unit can contain depress	ions that are filled with water when the river is not fleeding

	pression in which water ponds, or is saturated to the surface, at y outlet, if present, is higher than the interior of the wetland.
☐ NO - go to 7	\square YES - The wetland class is Depressional
•	area with no obvious depression and no overbank flooding? In a few inches. The unit seems to be maintained by high itched, but has no obvious natural outlet.
□ NO - go to 8	\square YES - The wetland class is Depressional
	ssify and probably contains several different HGM classes. For de into a riverine floodplain, or a small stream within a

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for

the rating system if you have several HGM classes present within the wetland unit being scored.

HGM classes within the wetland unit being rated	HGM class to use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

Wetland name or number

SLOPE WETLANDS		
Water Quality Functions - Indicators that the site functions to im	prove water quality	
S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1	ft vertical drop in	
elevation for every 100 ft of horizontal distance)		
Slope is 1% or less	points = 3	0
Slope is > 1% - 2%	points = 2	O
Slope is > 2% - 5%	points = 1	
Slope is greater than 5%	points = 0	
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic		0
(use NRCS definitions):	Yes = 3 No = 0	O
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollut		
Choose the points appropriate for the description that best fits the plants in the		
means you have trouble seeing the soil surface (>75% cover), and uncut mean	s not grazed or	
mowed and plants are higher than 6 in.		
Dense, uncut, herbaceous plants > 90% of the wetland area	points = 6	6
Dense, uncut, herbaceous plants > ½ of area	points = 3	
Dense, woody, plants > ½ of area	points = 2	
Dense, uncut, herbaceous plants > ¼ of area	points = 1	
Does not meet any of the criteria above for plants	points = 0	
·	in the boxes above	6
Rating of Site Potential If score is: $\Box 12 = H \Box 6 - 11 = M \Box 0 - 5 = L$	Record the rating on	the first page
S 2.0. Does the landscape have the potential to support the water quality function	on of the site?	
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in		1
land uses that generate pollutants?	Yes = 1 No = 0	ı
S 2.2. Are there other sources of pollutants coming into the wetland that are		
not listed in question S 2.1?		0
Other Sources	Yes = 1 No = 0	
Total for S 2 Add the points	in the boxes above	1
Rating of Landscape Potential If score is:	Record the rating on	the first page
S 3.0. Is the water quality improvement provided by the site valuable to society?	?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river,		0
lake, or marine water that is on the 303(d) list?	Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue?		4
At least one aquatic resource in the basin is on the 303(d) list.	Yes = 1 No = 0	1
S 3.3. Has the site been identified in a watershed or local plan as important for		
maintaining water quality? Answer YES if there is a TMDL for the basin in		2
which the unit is found?	Yes = 2 No = 0	
Total for S 3 Add the points	in the boxes above	3
Rating of Value If score is: 2 - 4 = H 1 = M 0 = L	Record the rating on	the first page

SLOPE WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce floor	oding and stream er	osion
S 4.0. Does the site have the potential to reduce flooding and stream erosion?		
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose		
the points appropriate for the description that best fits conditions in the wetland	l. Stems of plants	
should be thick enough (usually $> 1/8$ in), or dense enough, to remain erect du	ıring surface flows.	1
Dense, uncut, rigid plants cover > 90% of the area of the wetland	points = 1	
All other conditions	points = 0	
Rating of Site Potential If score is:	Record the rating on	the first page
S 5.0. Does the landscape have the potential to support hydrologic functions of	the site?	
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land		0
uses or cover that generate excess surface runoff?	Yes = 1 No = 0	U
Rating of Landscape Potential If score is: ☐1 = M	Record the rating on	the first page
S 6.0. Are the hydrologic functions provided by the site valuable to society?		
S 6.1. Distance to the nearest areas downstream that have flooding problems:		
The sub-basin immediately down-gradient of site has flooding		
problems that result in damage to human or natural resources (e.g.,		1
houses or salmon redds)	points = 2	•
Surface flooding problems are in a sub-basin farther down-gradient	points = 1	
No flooding problems anywhere downstream	points = 0	
S 6.2. Has the site been identified as important for flood storage or flood		
conveyance in a regional flood control plan?	Yes = 2 No = 0	
Total for S 6 Add the points	in the boxes above	1
Rating of Value If score is: 2 - 4 = H 1 = M 0 = L	Record the rating on	the first page

NOTES and FIELD OBSERVATIONS:

Wetland name or number

These questions apply to wetlands of all HGM classes.				
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat				
H 1.0. Does the site have the potential to provide habitat?				
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.				
 ☐ Aquatic bed ☐ Emergent ☐ Scrub-shrub (areas where shrubs have > 30% cover) ☐ Forested (areas where trees have > 30% cover) ☐ I structures: points = 1 ☐ Forested (areas where trees have > 30% cover) ☐ I structure: points = 0 ☐ If the unit has a Forested class, check if: ☐ The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 	0			
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).				
 □ Permanently flooded or inundated □ Seasonally flooded or inundated □ Occasionally flooded or inundated □ Occasionally flooded or inundated □ Saturated only □ Permanently flowing stream or river in, or adjacent to, the wetland □ Seasonally flowing stream in, or adjacent to, the wetland 	1			
☐ Lake Fringe wetland☐ Freshwater tidal wetland2 points2 points				
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species points = 0	0			
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. None = 0 points Low = 1 point Moderate = 2 points All three diagrams in this row are HIGH = 3 points	0			

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number	
of points.	
☐ Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long)	
☐ Standing snags (dbh > 4 in) within the wetland	
☐ Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends	
at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at	
least 33 ft (10 m)	0
☐ Stable steep banks of fine material that might be used by beaver or muskrat for denning	
(> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees	
that have not yet weathered where wood is exposed)	
☐ At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas	
that are permanently or seasonally inundated (structures for egg-laying by amphibians)	
☐ Invasive plants cover less than 25% of the wetland area in every stratum of plants (see	
H 1.1 for list of strata)	
Total for H 1 Add the points in the boxes above	1
Rating of Site Potential If Score is: 15 - 18 = H 7 - 14 = M 0 - 6 = L Record the rating on	the first page
H 2.0. Does the landscape have the potential to support the habitat function of the site?	
H 2.1 Accessible habitat (include only habitat that directly abuts wetland unit).	
Calculate:	
1 % undisturbed habitat + (0 % moderate & low intensity land uses / 2) = 1%	
70 undistance in the interest	
If total accessible habitat is:	0
$> \frac{1}{3}$ (33.3%) of 1 km Polygon points = 3	Ŭ
20 - 33% of 1 km Polygon points = 2	
10 - 19% of 1 km Polygon points = 1	
< 10 % of 1 km Polygon points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.	
Calculate:	
6 % undisturbed habitat + (45 % moderate & low intensity land uses / 2) = 28.5%	
11 11 4 1 11 11 4 5004 4 D 1	2
Undisturbed habitat > 50% of Polygon points = 3	
Undisturbed habitat 10 - 50% and in 1-3 patches points = 2	
Undisturbed habitat 10 - 50% and > 3 patches points = 1	
Undisturbed habitat < 10% of 1 km Polygon points = 0	
H 2.3 Land use intensity in 1 km Polygon: If	
> 50% of 1 km Polygon is high intensity land use points = (-2)	0
≤ 50% of 1km Polygon is high intensity points = 0	_
Total for H 2 Add the points in the boxes above	2
Rating of Landscape Potential If Score is: 4 - 6 = H 1 - 3 = M 1 - 3 = M 1 - 3 = L Record the rating on	the first page
H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? <i>Choose</i>	
only the highest score that applies to the wetland being rated.	
Site meets ANY of the following criteria: points = 2	
☐ It has 3 or more priority habitats within 100 m (see next page)	
☐ It provides habitat for Threatened or Endangered species (any plant	
or animal on the state or federal lists)	
☐ It is mapped as a location for an individual WDFW priority species	
☐ It is a Wetland of High Conservation Value as determined by the	
Department of Natural Resources	
☐ It has been categorized as an important habitat site in a local or	
regional comprehensive plan, in a Shoreline Master Plan, or in a	
watershed plan	
Site has 1 or 2 priority habitats (listed on next page) with in 100m points = 1	
	l

Wetland name or number

Site does not meet any of the criteria above points = 0

Rating of Value If Score is: 2 = H 1 = M 0 = L

Record the rating on the first page

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.

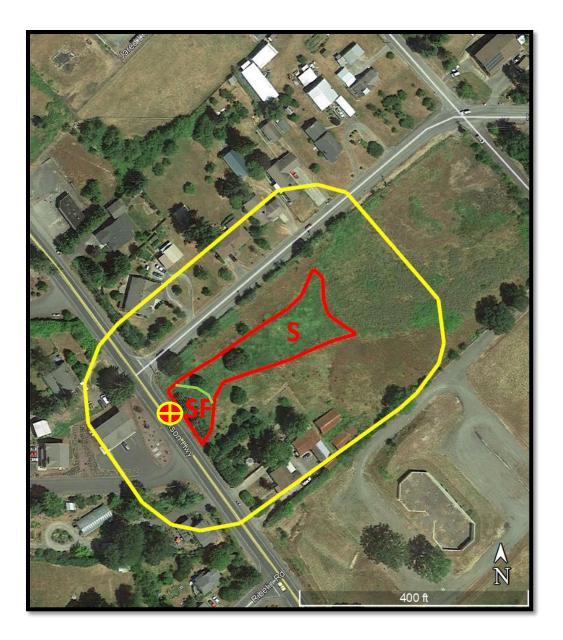
http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here: http://wdfw.wa.gov/conservation/phs/list/

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE**: This question is independent of the land use between the wetland unit and the priority habitat.

Ш	Aspen Stands : Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
	Biodiversity Areas and Corridors : Areas of habitat that are relatively important to various species of native fish and wildlife (<i>full descriptions in WDFW PHS report</i>).
	Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
	Old-growth/Mature forests: Old-growth west of Cascade crest – Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests – Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
	Oregon White Oak : Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (<i>full descriptions in WDFW PHS report p. 158</i> – see web link above).
	Riparian : The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
	Westside Prairies : Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (<i>full descriptions in WDFW PHS report p. 161 – see web link above</i>).
	Instream : The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
	Nearshore : Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (<i>full descriptions of habitats and the definition of relatively undisturbed are in WDFW report</i> – see web link on previous page).
	Caves : A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
	Cliffs: Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
	Talus : Homogenous areas of rock rubble ranging in average size 0.5 - 6.5 ft (0.15 - 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
	Snags and Logs : Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are

Wetland name or number


addressed elsewhere.

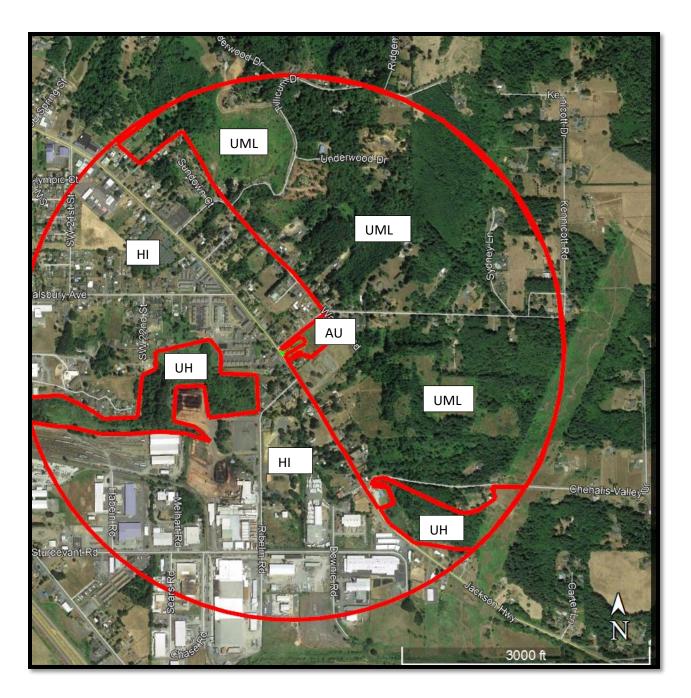
CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland	Туре	Category
Chook of	form exitoric that apply to the westland. List the extension, when the appropriate exitoric are mat	
	f any criteria that apply to the wetland. List the category when the appropriate criteria are met. Estuarine Wetlands	
30 1.0.1	Does the wetlands Does the wetland meet the following criteria for Estuarine wetlands?	
	The dominant water regime is tidal,	
	Vegetated, and	
	With a salinity greater than 0.5 ppt	
	☐ Yes - Go to SC 1.1 ☑ No = Not an estuarine wetland	
SC 1.1.	Is the wetland within a National Wildlife Refuge, National Park, National Estuary	
30 1.1.	Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific	
	Reserve designated under WAC 332-30-151?	
	☐ Yes = Category I ☐ No - Go to SC 1.2	
SC 1.2.	Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
T.Z.	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing,	
	and has less than 10% cover of non-native plant species. (If non-native species are	
	Spartina, see page 25)	
	At least 3/4 of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-	
	grazed or un-mowed grassland.	
	The wetland has at least two of the following features: tidal channels, depressions with	
	open water, or contiguous freshwater wetlands.	
	☐ Yes = Category I ☐ No = Category II	
SC 2.0.	Wetlands of High Conservation Value (WHCV)	
	Has the WA Department of Natural Resources updated their website to include the list	
	of Wetlands of High Conservation Value?	
SC 2.2.	Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
	☐ Yes = Category I ☑ No = Not WHCV	
SC 2.3.	Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
	http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
	☐ Yes - Contact WNHP/WDNR and to SC 2.4 ☐ No = Not WHCV	
SC 2.4.	Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation	
	Value and listed it on their website?	
	☐ Yes = Category I ☐ No = Not WHCV	
SC 3.0.		
	Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation	
	in bogs? Use the key below. If you answer YES you will still need to rate the	
	wetland based on its functions.	
SC 3.1.	Does an area within the wetland unit have organic soil horizons, either peats or mucks,	
	that compose 16 in or more of the first 32 in of the soil profile?	
	☐ Yes - Go to SC 3.3 ☐ No - Go to SC 3.2	
SC 3.2.	Does an area within the wetland unit have organic soils, either peats or mucks, that are	
	less than 16 in deep over bedrock, or an impermeable hardpan such as clay or volcanic	
	ash, or that are floating on top of a lake or pond?	
	\square Yes - Go to SC 3.3 \square No = Is not a bog	
SC 3.3.	Does an area with peats or mucks have more than 70% cover of mosses at ground	
	level, AND at least a 30% cover of plant species listed in Table 4?	
	☐ Yes = Is a Category I bog ☐ No - Go to SC 3.4	
	NOTE: If you are uncertain about the extent of mosses in the understory, you may	
	substitute that criterion by measuring the pH of the water that seeps into a hole dug at	
	least 16 in deep. If the pH is less than 5.0 and the plant species in Table 4 are present,	
0000	the wetland is a bog.	
SC 3.4.	Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir,	
	western red cedar, western hemlock, lodgepole pine, quaking aspen, Engelmann	
	spruce, or western white pine, AND any of the species (or combination of species) listed	I

in Table 4 provide more	than 30% of	the cove	r under	the canopy?		•	,	
	☐ Yes = Is	a Catego	ry I bo	g	☐ No =	s Is no	t a bog	

SC 4.0. I	Forested Wetlands	
00	Does the wetland have at least 1 contiguous acre of forest that meets one of these	
	criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you</i>	
	answer YES you will still need to rate the wetland based on its functions.	
	Old-growth forests (west of Cascade crest): Stands of at least two tree species,	
	forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac	
	(20 trees/ha) that are at least 200 years of age OR have a diameter at breast height	
	(dbh) of 32 in (81 cm) or more.	
	Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-	
	200 years old OR the species that make up the canopy have an average diameter (dbh)	
	exceeding 21 in (53 cm).	
	choccaing 21 in (55 cm).	
	☐ Yes = Category I ☑ No = Not a forested wetland for this section	
SC 5.0. \	Wetlands in Coastal Lagoons	
	Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
	The wetland lies in a depression adjacent to marine waters that is wholly or partially	
	separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently,	
_	rocks	
Ш	The lagoon in which the wetland is located contains ponded water that is saline or	
	brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (<i>needs to</i>	
	be measured near the bottom)	
20 5 4 1	☐ Yes - Go to SC 5.1 ☑ No = Not a wetland in a coastal lagoon	
SC 5.1. i	Does the wetland meet all of the following three conditions? The wetland is relatively undisturbed (has no diking ditabing filling cultivation grazing).	
\sqcup	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing),	
	and has less than 20% cover of aggressive, opportunistic plant species (see list of	
	species on p. 100). At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-	
Ш	grazed or un-mowed grassland.	
	The wetland is larger than $\frac{1}{10}$ ac (4350 ft ²)	
	<u> </u>	
20 0 0 1	☐ Yes = Category I ☐ No = Category II	
SC 6.0. i	nterdunal Wetlands Is the wetland west of the 1889 line (also called the Western Boundary of Upland	
	· · · · · · · · · · · · · · · · · · ·	
	Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions.	
	In practical terms that means the following geographic areas:	
	Long Beach Peninsula: Lands west of SR 103	
	Grayland-Westport: Lands west of SR 105	
	Ocean Shores-Copalis: Lands west of SR 115 and SR 109	
ш	☐ Yes - Go to SC 6.1 ☑ No = Not an interdunal wetland for rating	
SC 6.1.	Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form	
00 0	(rates H,H,H or H,H,M for the three aspects of function)?	
	☐ Yes = Category I ☐ No - Go to SC 6.2	
SC 6.2.	Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	
00 0	$\Box \text{ Yes} = \textbf{Category II} \qquad \Box \text{ No - Go to } \textbf{SC 6.3}$	
SC 6.3.	Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and	
	1 ac?	
	☐ Yes = Category III ☐ No = Category IV	
Categor	y of wetland based on Special Characteristics	
_	swered No for all types, enter "Not Applicable" on Summary Form	

SF = Seasonally Flooded


S = Saturated

150-offset

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A1 Hydroperiods Jackson Villa 4

Accessible Habitat

1% Undisturbed (AU)

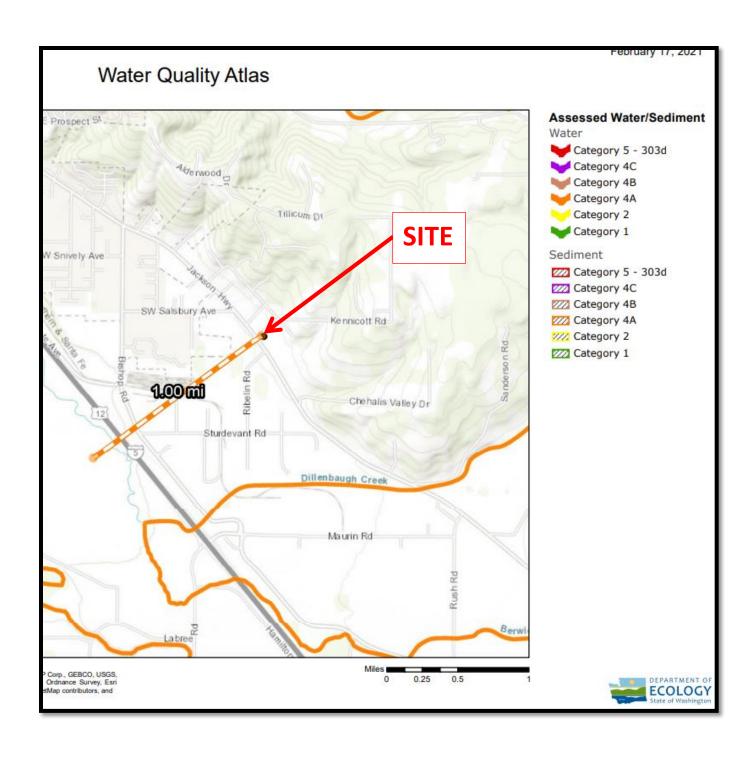
0% Moderate & Low Intensity Land Use/2 = (AML)

Undisturbed Habitat

6% Undisturbed (UH)

45% Moderate & Low Intensity Land Use/2 = (UML)

High Intensity = HI (48%)


Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure A2 1km Polygon Jackson Villa 4

E = Emergent

Loowit Consulting Group, LLC
Natural Resources & Project
Management
360.431.5118

Figure A3
Cowardin Plant Classes
Jackson Villa 4

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118

Figure A4 303(d) Listed Waters Jackson Villa 4

	Listing ID: 6	670
	Main Listing Informa	ation
Listing ID: 6670 Waterbody Name: DILLENBAUGH CRI	EEK	Current Category: 4A
Medium: Water		View Category History
Parameter: Bacteria		
WQI Project: Upper Chehalis Rive Designated Use: None	er Bacteria TMDL 📵	
	Assessment Uni	t
Assessment Unit ID: 17100103006316	County: Lewis	
	WRIA: 23 - Upper Chehalis	
	Basis Statemen	<u>-</u>
Crawford, 1987. 2 excursions beyond th		M 1.7.
Dont of the Line	Remarks	IDL approved by EDA 07/22/04 July
Part of the Upp	er Chehalis Fecal Coliform Bacteria TM Data Sources	IDL approved by EPA 07/22/04KK
	No Source Records	
	Map Link	
	Map Link	
	(Back To Results)	

Loowit Consulting Group, LLC
Natural Resources & Project
Management
360.431.5118

Figure A5 TMDL Jackson Villa 4

APPENDIX C -CLIMATOLOGICAL DATA

Daily Data | AgWeatherNet at Washington State University

Date	Date	Min°F	Avg°F	Max°F	Avg1.5m DP°F	Avg1.5m RH%	Avg1.5m LWu.	AvgDir	Avg Speedmph	2m MaxGustmph	2 in. °F	Min°F	Avg°F	AvgSoilVWC%	TotPrecin	TotalSolarRadMJ/m²	EToin	ETrin	Avg2m Atm.Pressii
2020/10/30	30	37.4	49.4	59.3	44.0	82.9	0.07	SW	3.9	16.0	51.4	52.5	53.1	41.9	0.16	6.51	0.04	0.05	30.14
2020/10/31	31	32.9	42.9	59.3	38.6	86.5	0.05	N	2.2	12.1	48.5	51.2	52.1	41.9	0.01	8.62	0.03	0.05	30.36
2020/11/01	1	32.2	43.4	64.8	39.8	88.9	0.06	SW	2.0	7.1	47.7	50.0	50.9	41.6	0.00	9.44	0.04	0.05	30.22
2020/11/02	2	31.0	44.8	67.2	39.8	86.1	0.06	S	2.6	9.6	47.7	49.6	50.6	41.4	0.00	9.87	0.05	0.07	30.10
2020/11/03	3	38.5	50.7	59.0	48.5	92.3	0.09	S	6.5	22.8	49.3	50.2	50.7	42.7	0.60	2.80	0.02	0.03	29.95
2020/11/04	4	58.5	60.7	64.0	57.7	89.9	0.02	S	7.6	20.0	55.1	51.4	53.0	43.1	0.33	2.64	0.04	0.05	30.07
2020/11/05	5	46.2	51.9	59.8	50.3	94.1	0.19	SW	2.8	11.0	54.5	54.4	54.9	44.1	0.78	1.10	0.01	0.02	30.05
2020/11/06	6	33.2	43.2	49.4	40.4	90.3	0.12	N	5.2	20.3	50.3	52.4	53.3	43.7	0.45	3.35	0.02	0.02	29.85
2020/11/07	7	30.3	35.3	42.2	34.2	96.0	0.10	W	2.4	12.1	46.1	49.8	50.6	42.3	0.00	3.22	0.02	0.02	29.79
2020/11/08	8	25.3	34.0	48.3	27.1	81.4	0.04	N	2.0	12.1	43.5	47.7	48.5	41.8	0.00	9.41	0.02	0.04	30.04
2020/11/09	9	25.0	34.5	41.3	30.4	87.0	0.01	S	4.1	15.0	41.0	45.7	46.4	41.5	0.13	3.49	0.02	0.03	30.20
2020/11/10	10	37.3	42.0	48.1	40.2	93.5	0.13	S	3.8	12.1	43.6	45.4	45.8	43.0	0.39	3.74	0.02	0.03	30.04
2020/11/11	11	34.2	37.9	42.2	36.8	95.9	0.11	SW	1.9	8.2	43.7	46.0	46.3	42.6	0.05	2.92	0.01	0.02	30.17
2020/11/12	12	35.0	41.2	46.3	37.3	86.6	0.06	S	6.8	25.3	43.6	45.8	46.1	42.0	0.01	3.16	0.03	0.04	29.95
2020/11/13	13	39.3	44.8	49.5	41.4	87.9	0.12	S	6.6	29.6	45.4	46.0	46.4	43.9	1.60	3.13	0.02	0.04	29.57

CONTACT INFORMATION

PREPARER INFORMATION

AAG PROJECT NUMBER:

AAG20-109

CONTACT:

CURTIS D. CUSHMAN

ADDRESS:

8947 BUTTONWOOD LANE NE OLYMPIA, WASHINGTON 98516

TELEPHONE:

(360) 491-5155

CELL:

(360) 481-6677

EMAIL ADDRESS:

CURTIS.CUSHMAN@COMCAST.NET

CLIENT INFORMATION

CLIENT:

AARON FULLER

TELEPHONE:

(360) 880-4927

BILLING ADDRESS:

645 SE PROSPECT STREET

CHEHALIS, WASHINGTON 98532

SITE ADDRESS:

0 JACKSON ROAD

CHEHALIS, WASHINGTON

SECTION 03 TOWNSHIP 13N RANGE 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD PRCL B BL-09-148

335384

PARCEL:

010799001000

GPS LOCATION:

46.641138 -122.926586 (DD)

SITE VISIT AND EVALUATION

AARON FULLER FULLER DESIGNS 645 SE PROSPECT STREET CHEHALIS, WA 98532

RE: JACKSON VILLAS LANDSLIDE HAZARD SITE VISIT

0 JACKSON ROAD CHEHALIS, WASHINGTON

SECTION 03 TOWNSHIP 13N RANGE 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD

PRCL B BL-09-148 335384

PARCEL: 010799001000

NOVEMBER 24, 2020

Dear Aaron Fuller:

All American Geotechnical, Inc (AAG) was commissioned by Aaron Fuller (client) in November, 2020, to do a site visit to determine the geology and landslide potential for the above parcel. This is in reference to a proposed development of multiple duplex family dwellings on the parcel. The site visit was done by Curtis D Cushman, L.G., L.E.G., on November 13, 2020. The client was not on site. The day was rainy.

SITE

The parcel is an imperfect rectangle, long to the northeast-southwest. A square section of the southernmost corner is omitted from the rectangle as it is not part of the parcel. This forms a blunt panhandle on the parcel's southwestern side which faces Jackson Highway. The northwest side is along Kennicott Road and the northeast side is along Hosanna Lane. The parcel looks like Nebraska.

The parcel slopes down to the southwest with the steepest area near the center of approximately 16%.

SITE GEOLOGY

The parcel is overall mapped (Lewis County GIS and confirmed on the Centralia 100:000 Quadrangle) as being a "mass wasting deposit(s), mostly landslide" (Qls). This is a general description and is not site-specific. These deposits are common in the Centralia-Chehalis region where they are commonly associated with erosion of the Qlh Logan Hill Formation sediments at the end of the last glacial epoch.

Allen Fiksdal, in Slope Stability of the Centralia-Chehalis Area Lewis County, Washington (OF Report 78-2, 1978), mapped these features as **Ols** - Old Landslides. He wrote: .these areas are not generally observed to be unstable, but because of the nature of subsurface materials, low density development is recommended. Engineering studies should be required if natural slopes are over30 percent. No such slopes were observed.

Site observation indicated various lithologies, dominantly sand and silt with gravel present as well. According to the client, the area of soil lining Hosanna Lane contains fill to a depth of 10 feet at least, including rubble, organic refuse, and concrete.

Along this area and looking into the higher banks of material and the overall surface, there was no evidence of faulting, failure, or cracking on a large scale. There is abundant vegetation, so some features may be obscure. However, overall, there is no evidence of movement or downslope displacement.

Liquefaction is Low to Moderate, and the site class is D which is Stiff Soil.

SITE HYDROLOGY

There was no ponding seen on the upper part of the property but light sheet water flow was entering the parcel from the slope descending from Hosanna Lane. There is a wetlands delineated in the center of the property.

SITE SOILS

The USDA WSS maps most of the site as Galvin silt loam, 0 to 8 percent slopes.

89-Galvin silt loam, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 2hht
- Elevation: 100 to 1,770 feet
- Mean annual precipitation: 40 to 70 inches
- Mean annual air temperature: 52 degrees F
- Frost-free period: 150 to 200 days

Map Unit Composition

- Galvin and similar soils: 85 percent
- Minor components: 15 percent

Description of Galvin

Setting

- · Landform: Alluvial fans
- Parent material: Alluvium derived from sandstone and shale

Typical profile

- H1 0 to 14 inches: silt loam
- H2 14 to 41 inches: silty clay loam
- H3 41 to 60 inches: silty clay

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: More than 80 inches

• Drainage class: Somewhat poorly drained

- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water capacity: High (about 11.2 inches)

This corresponds in part, but same sandy material was seen. However, as there is certainly fill on site, coarser sediments may be possible as well.

SITE VEGETATION

The site has been cleared to grass and scrub with the exception of isolated trees scattered on-site with some fringing trees and shrubs.

CONCLUSIONS

Based on the results of the site visit and an extensive literature search, the parcel does not appear to pose a landslide hazard. This determination is subject to change if, in construction, a glide plane is uncovered or there is mass wasting. Such an eventuality is not considered likely.

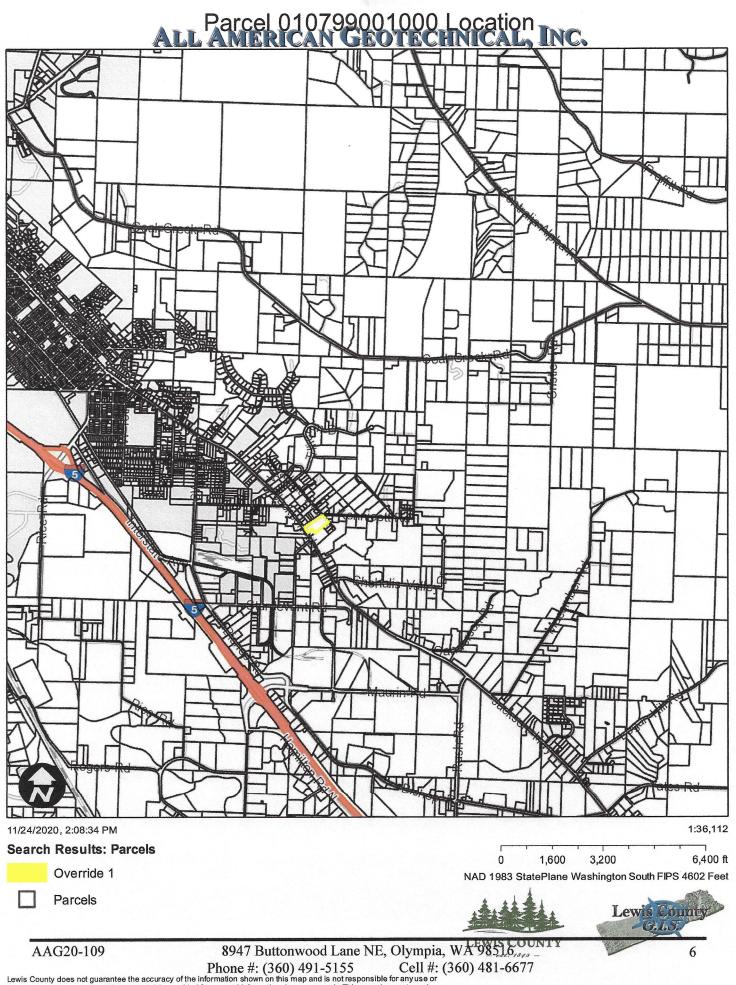
REPORT LIMITATIONS AND GUIDELINES FOR USE

We have prepared this report for the exclusive use of Aaron Fuller and his authorized agents for the proposed building location in Lewis County, Washington. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, expressed or implied, should be understood.

READ THESE PROVISIONS CLOSELY

Some clients, design professionals, and contractors may not recognize that the geoscience practices (geotechnical engineering or geology) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. All American Geotechnical includes these explanatory "limitations" provisions in our reports to help reduce such risks.

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, geotechnical engineering or geologic reporting does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.


11-24-1020

Respectfully Submitted,

GEOTECHNICAL TESTING LABORATORY

Curtis Dean Cushman

Curtis D. Cushman, L.G., L.E.G. Senior Engineering Geologist

Phone #: (360) 491-5155 Cell #: Lewis County does not guarantee the accuracy of the information shown on this map and is not responsible for any use or misuse by others regarding this material. It is provided for general informational purposes only. This map does not meet legal, engineering, or survey standards. Please practice due diligence and consult with licensed experts before making decisions.

Jackson Villas PN 010799001000 ALL AMERICAN GEOTECHNICAL, INC.

11/23/2020, 7:29:04 PM

Search Results: Parcels

Override 1

Parcels

1:4,514 820 ft 205 410

NAD 1983 StatePlane Washington South FIPS 4602 Feet

Lewis County

AAG20-109

8947 Buttonwood Lane NE, Olympia, WA 985 COUNT

Phone #: (360) 491-5155 Cell #: (360) 481-6677
Lewis County does not guarantee the accuracy of the information shown on this map and is not responsible for any use or misuse by others regarding this material. It is provided for general informational purposes only. This map does not meet legal, engineering, or survey standards. Please practice due diligence and consult with licensed experts before making

SECTION 8 – OPERATION AND MAINTENANCE MANUAL

The Following pages contain maintenance needs for most of the components that are part of your drainage system, as well as components that you may not have. Let us know if there are any components that are missing from these pages. Ignore the requirements that do not apply to your system. You should plan to complete a checklist for all system components on the following schedule

- 1. Monthly from November through April
- 2. Once in late summer (preferably September).
- 3. After any major storm (use 1" of precipitation in 24 hours) for any items marked "S".

Using photocopies of these pages, check off the items you looked for after each inspection. Add comments on issues found and actions taken. Keep these records in your files. These files will be needed to write your annual report if required. Some items may not need to be looked at every time an inspection is done.

You may call the jurisdiction for technical assistance. Please do not hesitate to call, especially if you are unsure whether a situation you have discovered may be a developing issue.

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
General	Trash & Debris	Any trash and debris which exceed 1 cubic feet per 1,000 square feet. In general, there should be no visual evidence of dumping.	Trash and debris cleared from site.
		If less than threshold all trash and debris will be removed as part of next scheduled maintenance.	
	Poisonous Vegetation and noxious weeds	Any poisonous or nuisance vegetation which may constitute a hazard to maintenance personnel or the public.	No danger of poisonous vegetation where maintenance personnel or the public might normally be. (Coordinate with local health department)
		Any evidence of noxious weeds as defined by State or local regulations. (Apply requirements of adopted IPM policies for the use of herbicides).	Complete eradication of noxious weeds may not be possible. Compliance with State or local eradication policies required
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
	Rodent Holes	Any evidence of rodent holes if facility is acting as a dam or berm, or any evidence of water piping through dam or berm via rodent holes.	Rodents destroyed and dam or berm repaired. (Coordinate with local health department; coordinate with Ecology Dam Safety Office if pond exceeds 10 acre-feet.)

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
Emergency Overflow/ Spillway and Berms over 4	Tree Growth	Tree growth on emergency spillways creates blockage problems and may cause failure of the berm due to uncontrolled overtopping.	Trees should be removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be
feet in height.		Tree growth on berms over 4 feet in height may lead to piping through the berm which could lead to failure of the berm.	removed and the berm restored. A licensed civil engineer should be consulted for proper berm/spillway restoration.
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.
		(Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	
Emergency Overflow/ Spillway	Emergency Overflow/ Spillway	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil at the top of out flow path of spillway.	Rocks and pad depth are restored to design standards.
		(Rip-rap on inside slopes need not be replaced.)	
<u> </u>	Erosion	See "Side Slopes of Pond"	

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
	Beaver Dams	Dam results in change or function of the facility.	Facility is returned to design function. (Coordinate trapping of beavers and removal of dams with appropriate permitting agencies)
	Insects	When insects such as wasps and hornets interfere with maintenance activities.	Insects destroyed or removed from site. Apply insecticides in compliance with adopted IPM policies
	Tree Growth and Hazard Trees	Tree growth does not allow maintenance access or interferes with maintenance activity (i.e., slope mowing, silt removal, vactoring, or equipment movements). If trees are not interfering with access or maintenance, do not remove	Trees do not hinder maintenance activities. Harvested trees should be recycled into mulch or other beneficial uses (e.g., alders for firewood). Remove hazard Trees
		If dead, diseased, or dying trees are identified (Use a certified Arborist to determine health of tree or removal requirements)	
Side Slopes of Pond	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion.	Slopes should be stabilized using appropriate erosion control measure(s); e.g., rock reinforcement, planting of grass, compaction.
		Any erosion observed on a compacted berm embankment.	If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.
Storage Area	Sediment	Accumulated sediment that exceeds 10% of the designed pond depth unless otherwise specified or affects inletting or outletting condition of the facility.	Sediment cleaned out to designed pond shape and depth; pond reseeded if necessary to control erosion.
	Liner (If Applicable)	Liner is visible and has more than three 1/4-inch holes in it.	Liner repaired or replaced. Liner is fully covered.
Pond Berms (Dikes)	Settlements	Any part of berm which has settled 4 inches lower than the design elevation.	Dike is built back to the design elevation.
		If settlement is apparent, measure berm to determine amount of settlement.	
		Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the settlement.	
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.
		(Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	

No. 3 – Closed Detention Systems (Tanks/Vaults)

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed	
Storage Area	Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.	
	Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter.	All sediment and debris removed from storage area.	
		(Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)		
	Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility. (Will require engineering analysis to determine structural stability).	All joint between tank/pipe sections are sealed.	
	Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.	
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications and is structurally sound.	
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls.	No cracks more than 1/4-inch wide at the joint of the inlet/outlet pipe.	
Manhole	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.	
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.	
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.	
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.	
Catch Basins	See "Catch Basins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	

No. 4 – Control Structure/Flow Restrictor

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
	Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 5 - Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running	Top slab is free of holes and cracks.
	Top Slab	into basin).	
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

No. 6 – Debris Barriers (e.g., Trash Racks)

Maintenance Components	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
Metal	Damaged/ Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
		Bars are missing or entire barrier missing.	Bars in place according to design.
		Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
	Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe	Barrier firmly attached to pipe

No. 10 - Filter Strips

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
General	Sediment Accumulation on Grass	Sediment depth exceeds 2 inches.	Remove sediment deposits, re-level so slope is even and flows pass evenly through strip.
	Vegetation	When the grass becomes excessively tall (greater than 10-inches); when nuisance weeds and other vegetation starts to take over.	Mow grass, control nuisance vegetation, such that flow not impeded. Grass should be mowed to a height between 3-4 inches.
	Trash and Debris Accumulation	Trash and debris accumulated on the filter strip.	Remove trash and Debris from filter.
	Erosion/Scouring	Eroded or scoured areas due to flow channelization, or higher flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. The grass will creep in over the rock in time. If bare areas are large, generally greater than 12 inches wide, the filter strip should be re-graded and reseeded. For smaller bare areas, overseed when bare spots are evident.
	Flow spreader	Flow spreader uneven or clogged so that flows are not uniformly distributed through entire filter width.	Level the spreader and clean so that flows are spread evenly over entire filter width.

No. 15 – Manufactured Media Filters)

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Below Ground Vault	Sediment Accumulation on Media.	Sediment depth exceeds 0.25-inches.	No sediment deposits which would impede permeability of the compost media.
	Sediment Accumulation in Vault	Sediment depth exceeds 6-inches in first chamber.	No sediment deposits in vault bottom of first chamber.
	Trash/Debris Accumulation	Trash and debris accumulated on compost filter bed.	Trash and debris removed from the compost filter bed.
	Sediment in Drain Pipes/Clean- Outs	When drain pipes, clean-outs, become full with sediment and/or debris.	Sediment and debris removed.
	Damaged Pipes	Any part of the pipes that are crushed or damaged due to corrosion and/or settlement.	Pipe repaired and/or replaced.
	Access Cover Damaged/Not Working	Cover cannot be opened; one person cannot open the cover using normal lifting pressure, corrosion/deformation of cover.	Cover repaired to proper working specifications or replaced.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch or evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determine that the vault is not structurally sound.	Vault replaced or repairs made so that vault meets design specifications and is structurally sound.
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or evidence of soil particles entering through the cracks.	Vault repaired so that no cracks exist wider than 1/4-inch at the joint of the inlet/outlet pipe.
	Baffles	Baffles corroding, cracking warping, and/or showing signs of failure as determined by maintenance/inspection person.	Baffles repaired or replaced to specifications.
	Access Ladder Damaged	Ladder is corroded or deteriorated, not functioning properly, not securely attached to structure wall, missing rungs, cracks, and misaligned.	Ladder replaced or repaired and meets specifications, and is safe to use as determined by inspection personnel.
Below Ground Cartridge Type	Media	Drawdown of water through the media takes longer than 1 hour, and/or overflow occurs frequently.	Media cartridges replaced.
	Short Circuiting	Flows do not properly enter filter cartridges.	Filter cartridges replaced.

No. 18 - Catchbasin Inserts

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Sediment Accumulation	When sediment forms a cap over the insert media of the insert and/or unit.	No sediment cap on the insert media and its unit.
	Trash and Debris Accumulation	Trash and debris accumulates on insert unit creating a blockage/restriction.	Trash and debris removed from insert unit. Runoff freely flows into catch basin.
	Media Insert Not Removing Oil	Effluent water from media insert has a visible sheen.	Effluent water from media insert is free of oils and has no visible sheen.
	Media Insert Water Saturated	Catch basin insert is saturated with water and no longer has the capacity to absorb.	Remove and replace media insert
	Media Insert-Oil Saturated	Media oil saturated due to petroleum spill that drains into catch basin.	Remove and replace media insert.
	Media Insert Use Beyond Normal Product Life	Media has been used beyond the typical average life of media insert product.	Remove and replace media at regular intervals, depending on insert product.

<u>SECTION 9 – DRAFT STORMWATER MAINTENANCE AGREEMENT</u>

The following pages contain a draft maintenance agreement to be completed prior to final approval. Upon completion of road construction and stormwater facilities; a signed agreement will be executed, and a copy provided to the City of Chehalis.

AFTER RECORDING RETURN TO:
PLEASE PRINT OR TYPE ALL INFORMATION DOCUMENT TITLE(S) (OR
TRANSACTIONS CONTAINED THEREIN): Stormwater Maintenance Agreement
REFERENCE NUMBER(S) OF DOCUMENTS ASSIGNED/RELEASED:
GRANTOR/BORROWER (LAST NAME FIRST, FIRST NAME AND INITIALS): Industries, Lakewood
McGlaughlin, Austin
ADDITIONAL NAMES LISTED ON PAGE N/A OF DOCUMENT.
GRANTEE/ASSIGNEE/BENEFICIARY (LAST NAME FIRST, FIRST NAME AND INITIALS): City of Washington, Chehalis
City of Washington, Chenans
ADDITIONAL NAMES LISTED ON PAGE N/A OF DOCUMENT.
LEGAL DESCRIPTION (ABBREVIATED: I.E. LOT, BLOCK, PLAT OR SECTION, TOWNSHIP, RANGE)
Section 03 Township 13N Range 02W PT LT 8 SE RD BLK 1 RICHARDT'S RPLT BLK 4-6 PARCUVIA ADD PRCL B BL-09-148 335384
COMPLETE LEGAL DESCRIPTION IS LISTED ON PAGE N/A OF DOCUMENT.
ASSESSOR'S TAX PARCEL NUMBER(S)
010799001000

THE AUDITOR/RECORDER WILL RELY ON THE INFORMATION PROVIDED ON THIS FORM. THE STAFF WILL NOT READ THE DOCUMENT TO VERIFY THE ACCURACY OR COMPLETENESS OF THE INDEXING INFORMATION PROVIDED HEREIN.

Parcel Number(s): <u>010799001000</u> Project Name: <u>Jackson Villas #4</u>

Address: <u>0 Jackson Highway, Chehalis, WA 98532</u>

THIS AGREEMENT, made this ______ day of ______, 20_, by and between Mike and Patricia Duch, hereinafter referred to as the "Owners(s)" of the following property and Lewis County hereinafter referred to as the "County".

WITNESSETH, that

WHEREAS, Owner has submitted for approval by County a permit application and Site Plan for the construction and installation of stormwater management facilities pursuant to County Code chapter 15.45; and

WHEREAS, the County Code requires, as a condition of permit approval, a maintenance agreement between the County and the Owner ensuring the Owner constructs and maintains the stormwater facilities identified in the Site Plan.

THEREFORE, the Owner of certain real property, with full authority to execute deeds, mortgages, other covenants, do hereby covenant with the County and agree as follows:

- 1. Owner shall construct and install stormwater management facilities as depicted and shown on the Record Drawings for the above referenced parcel number(s)
- 2. Owner shall continuously maintain the stormwater management facilities as shown on the Site Plan in good working order and as specified in the maintenance schedule.
- 3. Owner hereby grants County, its authorized agents and employees, to enter onto the Property to inspect the stormwater facilities pursuant to Chapter 15.45 of the County Code.
- 4. In the event Owner fails to maintain the stormwater management facilities as shown on the Site Plan in good working order acceptable to the County, the County may enter the Property and take whatever steps deemed necessary and appropriate to maintain (including repair or replace) said stormwater facilities. It is expressly understood and agreed that the County is under no obligation to maintain or repair or replace said facilities, and in no event shall this Agreement be construed to impose such an obligation on the County.
- 5. In the event that the County performs work of any nature pursuant to section 4 of this agreement or expends any funds in performance of such work for labor, equipment, supplies or materials, Owner shall reimburse County for all reasonable costs incurred. Owner, its executors, administrators, assigns, heirs, and any other successors in interest, shall reimburse County for all costs within thirty (30) days of Owner's receipt of written

demand by the County for reasonable costs incurred, including but not limited to attorney fees, collection costs, and interest at the statutory rate.

- 6. It is the intent of this Agreement to ensure the continuous and proper maintenance of stormwater management facilities by the Owner, its heirs, successors and assigns; provided, however, that this Agreement shall not be deemed to create or affect any additional liability of any party for damage alleged to result from or caused by stormwater management.
- 7. Owner, its executors, administrators, assigns, and any other successors in interest, shall indemnify and hold the County, its agents and employees harmless from any and all damages, accidents, casualties, occurrences, or claims which might arise or be asserted against County, its agents or employees, from the construction, presence, existence, or maintenance, of the stormwater management facilities by Owner.
- 8. This Agreement shall be recorded among the land records of Lewis County, Washington, and shall constitute a covenant running with the land, and shall be binding upon Owner, its administrators, executors, assigns, heirs, and any other successor in interest.

Date :	Signature:
	Name:
	Title:

State of Washington		
County of		
is the person who appeared before n	cory evidence that (name of p e, and said person acknowledged that (he/she to be (his/her) free and voluntary act for the u t.) signed
Dated:		
(Seal or stamp)	Signature	
	Title	
	My appointment expires:	